2 resultados para Solid Flow-rate
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE-LD/LVI-GC–qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03–28.96 μg L−1) and HS-SPME (0.02–20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg L−and from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared. Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.
Resumo:
This work presents a RP-HPLC method for the simultaneous quantification of free amino acids and biogenic amines in liquid food matrices and the results of the application to honey and wine samples obtained from different production processes and geographic origins. The developed methodology is based on a pre-column derivatization with o-phthaldialdehyde carried out in the sample injection loop. The compounds were separated in a Nova-Pack RP-C18 column (150 mm × 3.9 mm, 4 μm) at 35 °C. The mobile phase used was a mixture of phase A: 10 mM sodium phosphate buffer (pH 7.3), methanol and tetrahydrofuran (91:8:1); and phase B: methanol and phosphate buffer (80:20), with a flow rate of 1.0 ml/min. Fluorescence detection was used at an excitation wavelength of 335 nm and an emission wavelength of 440 nm. The separation and quantification of 19 amino acids and 6 amines was carried out in a single run as their OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The method showed to be adequate for the purpose, with an average RSD of 2% for the different amino acids; detection limits varying between 0.71 mg/l (Asn) and 8.26 mg/l (Lys) and recovery rates between 63.0% (Cad) and 98.0% (Asp). The amino acids present at the highest concentration in honey and wine samples were phenylalanine and arginine, respectively. Only residual levels of biogenic amines were detected in the analysed samples.