9 resultados para Sociology -- Methodology.
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Recently, ethyl carbamate (EC) was reclassified by the International Agency for Research on Cancer (IARC) as "probably carcinogenic to humans" and occurs mainly in fermented beverages. Nowadays many countries have set limit values for EC in alcoholic beverages. In this sense and taking into account the low concentrations found in alcoholic beverages, the scientific community has shown interest for the development of new analytical methods, whereby its simplification plays an important role in the EC control and prevention. Firstly, a simple, rapid and sensitive methodology was developed for the EC quantification in fortified wines by microextraction by packed sorbent (MEPS) with gas chromatography coupled with a mass spectrometer detector (GC-MS). This method showed good linearity (R2 = 0.999) and sensitivity (LOD = 1.5 μg/L). The accuracy of the method was assessed by means of repeatability and reproducibility (RSD < 7%). Moreover, a good recovery has been demonstrated (97 – 106%) as well as its applicability (16 fortified wines). Thus, the developed methodology has proven to be an excellent approach for routine quantification of EC in fortified wines. The EC evolution was also evaluated during a year and half of Madeira wine ageing submitted to two traditional ageing methods, estufagem and canteiro, in order to evaluate the formation kinetic. The results revealed that estufagem process increased the formation kinetic and promoted a linear increase of the EC concentration (R2 ≥ 0.977), proportionally to the ageing time (4 months). However, when the wines are firstly submitted to estufagem and then undergo canteiro ageing, the EC values remain almost constant during the following 14 months. The results suggest that estufagem does not seem to be the critical factor in the EC formation, but instead the amount of precursors in the medium.
Resumo:
This paper presents an overview of the development of teacher education in Portugal since the Revolution of 25 April 1974, which brought the country to democracy. Making use of the scenario model created by the ATEE-RDC19, it is an attempt to make clearer the hidden philosophies underlying the changes that are undertaken and show how teacher education has evolved from a romantic and idealistic social vision towards an ideology dictated by economic and selfish interests.
Resumo:
Allergicasthmarepresentsanimportantpublichealthissuewithsignificantgrowthovertheyears,especially in the paediatric population. Exhaled breath is a non-invasive, easily performed and rapid method forobtainingsamplesfromthelowerrespiratorytract.Inthepresentmanuscript,themetabolicvolatile profiles of allergic asthma and control children were evaluated by headspace solid-phase microextraction combined with gas chromatography–quadrupole mass spectrometry (HS-SPME/GC–qMS). The lack ofstudiesinbreathofallergicasthmaticchildrenbyHS-SPMEledtothedevelopmentofanexperimental design to optimize SPME parameters. To fulfil this objective, three important HS-SPME experimental parameters that influence the extraction efficiency, namely fibre coating, temperature and time extractions were considered. The selected conditions that promoted higher extraction efficiency corresponding to the higher GC peak areas and number of compounds were: DVB/CAR/PDMS coating fibre, 22◦C and 60min as the extraction temperature and time, respectively. The suitability of two containers, 1L Tedlar® bags and BIOVOC®, for breath collection and intra-individual variability were also investigated. The developed methodology was then applied to the analysis of children exhaled breath with allergicasthma(35),fromwhich13hadalsoallergicrhinitis,andhealthycontrolchildren(15),allowing to identify 44 volatiles distributed over the chemical families of alkanes (linear and ramified) ketones, aromatic hydrocarbons, aldehydes, acids, among others. Multivariate studies were performed by Partial LeastSquares–DiscriminantAnalysis(PLS–DA)usingasetof28selectedmetabolitesanddiscrimination between allergic asthma and control children was attained with a classification rate of 88%. The allergic asthma paediatric population was characterized mainly by the compounds linked to oxidative stress, such as alkanes and aldehydes. Furthermore, more detailed information was achieved combining the volatile metabolic data, suggested by PLS–DA model, and clinical data.
Resumo:
This article proposes a simple and sensitive HPLC method with photo-diode array detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250 4.6 mm, 5mm) column. The elution was performed in 12 min for the organic acids and in 60 min for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target compounds were detected at 210 nm (organic acids, flavan-3-ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans-resveratrol) and 360 nm (flavonoids). The RSD for the repeatability test (n55) of peak area and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the recovery results, with averaged values between 80 and 104% for polyphenols and 97–105% for organic acids. The calibration curves, obtained by triplicate injection of standard solutions, showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 0.9997 for organic acids. The LOD was in the range of 0.07–0.49 mg/L for polyphenols (cinnamic and gallic acids, respectively) and 0.001–0.046 g/L for organic acids (oxalic and lactic acids, respectively). The method was successfully used to measure and assess the polyphenolic fingerprint and organic acids profile of red, white, rose ´ and fortified wines.
Resumo:
A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). Under optimized conditions, excellent linearity View the MathML source(Rvalues2>0.9963), limits of detection of 0.006 μg mL−1 (quercetin) to 0.013 μg mL−1 (myricetin) and precision within 0.5–3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0–97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8 ± 3.7 μg mL−1). Quercetin (0.97 ± 0.41 μg mL−1) and kaempferol (0.66 ± 0.24 μg mL−1) were found in a lower concentration. The optimized MEPSC8 method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPSC8 approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9 ± 0.9% to 92.1 ± 0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.
Resumo:
This study provides a versatile validated method to determine the total vitamin C content, as the sum of the contents of L-ascorbic acid (L-AA) and dehydroascorbic acid (DHAA), in several fruits and vegetables and its degradability with storage time. Seven horticultural crops from two different origins were analyzed using an ultrahigh-performance liquid chromatographic–photodiode array (UHPLC-PDA) system, equipped with a new trifunctional high strength silica (100% silica particle) analytical column (100 mm×2.1 mm, 1.7 μm particle size) using 0.1% (v/v) formic acid as mobile phase, in isocratic mode. This new stationary phase, specially designed for polar compounds, overcomes the problems normally encountered in HPLC and is suitable for the analysis of large batches of samples without L-AA degradation. In addition, it proves to be an excellent alternative to conventional C18 columns for the determination of L-AA in fruits and vegetables. The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, accuracy, and inter/intraday precision. Validation experiments revealed very good recovery rate of 96.6±4.4% for L-AA and 103.1±4.8 % for total vitamin C, good linearity with r2-values >0.999 within the established concentration range, excellent repeatability (0.5%), and reproducibility (1.6%) values. The LOD of the method was 22 ng/mL whereas the LOQ was 67 ng/mL. It was possible to demonstrate that L-AA and DHAA concentrations in the different horticulture products varied oppositely with time of storage not always affecting the total amount of vitamin C during shelf-life. Locally produced fruits have higher concentrations of vitamin C, compared with imported ones, but vegetables showed the opposite trend. Moreover, this UHPLC-PDA methodology proves to be an improved, simple, and fast approach for determining the total content of vitamin C in various food commodities, with high sensitivity, selectivity, and resolving power within 3 min of run analysis.
Resumo:
Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima. The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.
Resumo:
The volatiles (VOCs) and semi-volatile organic compounds (SVOCs) responsible for aroma are mainly present in skin of grape varieties. Thus, the present investigation is directed towards the optimisation of a solvent free methodology based on headspace-solid-phase microextraction (HS-SPME) combined with gas chromatography–quadrupole mass spectrometry (GC–qMS) in order to establish the global volatile composition in pulp and skin of Bual and Bastardo Vitis vinifera L. varieties. A deep study on the extraction-influencing parameters was performed, and the best results, expressed as GC peak area, number of identified compounds and reproducibility, were obtained using 4 g of sample homogenised in 5 mL of ultra-pure Milli-Q water in a 20 mL glass vial with addition of 2 g of sodium chloride (NaCl). A divinylbenzene/carboxen/polydimethylsiloxane fibre was selected for extraction at 60 °C for 45 min under continuous stirring at 800 rpm. More than 100 VOCs and SVOCs, including 27 monoterpenoids, 27 sesquiterpenoids, 21 carbonyl compounds, 17 alcohols (from which 2 aromatics), 10 C13 norisoprenoids and 5 acids were identified. The results showed that, for both grape varieties, the levels and number of volatiles in skin were considerably higher than those observed in pulp. According to the data obtained by principal component analysis (PCA), the establishment of the global volatile signature of grape and the relationship between different part of grapes—pulp and skin, may be an useful tool to winemaker decision to define the vinification procedures that improves the organoleptic characteristics of the corresponding wines and consequently contributed to an economic valorization and consumer acceptance.