1 resultado para Ratings of perceived exertion
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aston University Research Archive (47)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (28)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (62)
- Brock University, Canada (29)
- Bucknell University Digital Commons - Pensilvania - USA (10)
- CentAUR: Central Archive University of Reading - UK (56)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (7)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (2)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons at Florida International University (38)
- Digital Peer Publishing (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (20)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (18)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (2)
- Ecology and Society (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (10)
- Instituto Superior de Psicologia Aplicada - Lisboa (3)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (5)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (6)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (59)
- Research Open Access Repository of the University of East London. (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (12)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (11)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (15)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Metodista de São Paulo (4)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (45)
- Université de Montréal, Canada (20)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (3)
- University of Michigan (2)
- University of Queensland eSpace - Australia (107)
- University of Washington (2)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
This thesis examines the concept of tie strength and investigates how it can be determined on the fly in the Facebook Social Network Service (SNS) by a system constructed using the standard developer API. We analyze and compare two different models: the first one is an adaptation of previous literature (Gilbert & Karahalios, 2009), the second model is built from scratch and based on a dataset obtained from an online survey. This survey took the form of a Facebook application that collected subjective ratings of the strength of 1642 ties (friendships) from 85 different participants. The new tie strength model was built based on this dataset by using a multiple regression method. We saw that the new model performed slightly better than the original adapted model, plus it had the advantage of being easier to implement. In conclusion, this thesis has shown that tie strength models capable of serving as useful friendship predictors are easily implementable in a Facebook application via standard API calls. In addition to a new tie strength model, the methodology adopted in this work permitted observation of the weights of each predictive variable used in the model, increasing the visibility of the factors that affects peoples’ relationships in online social networks.