1 resultado para Pronominal and nominal address forms
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Aberdeen University (2)
- Academic Research Repository at Institute of Developing Economies (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (5)
- Archive of European Integration (7)
- Aston University Research Archive (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (26)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (2)
- Blue Tiger Commons - Lincoln University - USA (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (40)
- Brock University, Canada (11)
- Bucknell University Digital Commons - Pensilvania - USA (9)
- CentAUR: Central Archive University of Reading - UK (38)
- Central European University - Research Support Scheme (3)
- Cochin University of Science & Technology (CUSAT), India (16)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (13)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (24)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Glasgow Theses Service (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (5)
- Instituto Politécnico do Porto, Portugal (4)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- National Center for Biotechnology Information - NCBI (14)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (16)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (161)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (52)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (8)
- Universidad Politécnica de Madrid (6)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (17)
- Universidade Federal do Rio Grande do Norte (UFRN) (19)
- Universidade Técnica de Lisboa (2)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (64)
- Université de Montréal (1)
- Université de Montréal, Canada (28)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (76)
- University of Queensland eSpace - Australia (25)
- University of Washington (5)
Resumo:
In this dissertation, different ways of combining neural predictive models or neural-based forecasts are discussed. The proposed approaches consider mostly Gaussian radial basis function networks, which can be efficiently identified and estimated through recursive/adaptive methods. Two different ways of combining are explored to get a final estimate – model mixing and model synthesis –, with the aim of obtaining improvements both in terms of efficiency and effectiveness. In the context of model mixing, the usual framework for linearly combining estimates from different models is extended, to deal with the case where the forecast errors from those models are correlated. In the context of model synthesis, and to address the problems raised by heavily nonstationary time series, we propose hybrid dynamic models for more advanced time series forecasting, composed of a dynamic trend regressive model (or, even, a dynamic harmonic regressive model), and a Gaussian radial basis function network. Additionally, using the model mixing procedure, two approaches for decision-making from forecasting models are discussed and compared: either inferring decisions from combined predictive estimates, or combining prescriptive solutions derived from different forecasting models. Finally, the application of some of the models and methods proposed previously is illustrated with two case studies, based on time series from finance and from tourism.