2 resultados para Power to decide process
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Nowadays computers have advanced beyond the desktop into many parts of everyday life and objects. To achieve this we have to make the computer invisible, and making a computer invisible is not a matter of size of the hardware, it’s all about how the human perceives the computer. To make this possible, the interaction with the computer has to be done in an alternative way, such that the user doesn’t notice the usual computer interfaces (mouse and keyboard) when using it. Therefore this thesis focuses on physical objects that are interactive to achieve various purposes like persuasive objects for stress relief, persuasive objects to help the process of teaching, persuasive objects for fun, persuasive objects to display internet information and persuasive objects to make people feel more in community (exchange virtual emotions), persuasive objects are going to be created and evaluated to see if they have the power to simplify and turn our lives better. The persuasive objects developed employ technology like sensors, actuators, microcontrollers, and computer/web services’ communication. This Master thesis starts by presenting a comprehensive introduction of what are persuasive objects and some general information about several areas that are related to our persuasive objects like stress relief, work experience, multimedia education and other major aspects. It continues by describing related work done in this area. Then we have a detailed view of each persuasive object and finally this thesis finishes with a general conclusion and notion of future work.
Resumo:
Computer vision is a field that uses techniques to acquire, process, analyze and understand images from the real world in order to produce numeric or symbolic information in the form of decisions [1]. This project aims to use computer vision to prepare an app to analyze a Madeira Wine and characterize it (identify its variety) by its color. Dry or sweet wines, young or old wines have a specific color. It uses techniques to compare histograms in order to analyze the images taken from a test sample inside a special container designed for this purpose. The color analysis from a wine sample using an image captured by a smartphone can be difficult. Many factors affect the captured image such as, light conditions, the background of the sample container due to the many positions the photo can be taken (different to capture facing a white wall or facing the floor for example). Using new technologies such as 3D printing it was possible to create a prototype that aims to control the effect of those external factors on the captured image. The results for this experiment are good indicators for future works. Although it’s necessary to do more tests, the first tests had a success rate of 80% to 90% of correct results. This report documents the development of this project and all the techniques and steps required to execute the tests.