1 resultado para Pianist and medical problems
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (19)
- Archive of European Integration (22)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (16)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Biodiversity Heritage Library, United States (2)
- Bioline International (9)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Boston University Digital Common (2)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (14)
- CamPuce - an association for the promotion of science and humanities in African Countries (1)
- CentAUR: Central Archive University of Reading - UK (16)
- Center for Jewish History Digital Collections (4)
- Central European University - Research Support Scheme (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (19)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (50)
- DigitalCommons@The Texas Medical Center (13)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (10)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (33)
- Indian Institute of Science - Bangalore - Índia (26)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (101)
- Queensland University of Technology - ePrints Archive (204)
- Repositorio Academico Digital UANL (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (12)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (5)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal (1)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (131)
- University of Queensland eSpace - Australia (20)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
In this dissertation, different ways of combining neural predictive models or neural-based forecasts are discussed. The proposed approaches consider mostly Gaussian radial basis function networks, which can be efficiently identified and estimated through recursive/adaptive methods. Two different ways of combining are explored to get a final estimate – model mixing and model synthesis –, with the aim of obtaining improvements both in terms of efficiency and effectiveness. In the context of model mixing, the usual framework for linearly combining estimates from different models is extended, to deal with the case where the forecast errors from those models are correlated. In the context of model synthesis, and to address the problems raised by heavily nonstationary time series, we propose hybrid dynamic models for more advanced time series forecasting, composed of a dynamic trend regressive model (or, even, a dynamic harmonic regressive model), and a Gaussian radial basis function network. Additionally, using the model mixing procedure, two approaches for decision-making from forecasting models are discussed and compared: either inferring decisions from combined predictive estimates, or combining prescriptive solutions derived from different forecasting models. Finally, the application of some of the models and methods proposed previously is illustrated with two case studies, based on time series from finance and from tourism.