1 resultado para Non-gaussian Random Functions
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Aberdeen University (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (27)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (15)
- Aston University Research Archive (70)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (26)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (122)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (46)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (21)
- CentAUR: Central Archive University of Reading - UK (61)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (8)
- Collection Of Biostatistics Research Archive (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (46)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (21)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- Glasgow Theses Service (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (29)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (2)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (95)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (2)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Scielo Saúde Pública - SP (13)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (28)
- Universidade Complutense de Madrid (5)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (54)
- Université de Montréal (2)
- Université de Montréal, Canada (39)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (33)
- University of Southampton, United Kingdom (2)
- University of Washington (3)
- WestminsterResearch - UK (1)
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.