4 resultados para Multimodal Logistics Platform
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Sharing sensor data between multiple devices and users can be^challenging for naive users, and requires knowledge of programming and use of different communication channels and/or development tools, leading to non uniform solutions. This thesis proposes a system that allows users to access sensors, share sensor data and manage sensors. With this system we intent to manage devices, share sensor data, compare sensor data, and set policies to act based on rules. This thesis presents the design and implementation of the system, as well as three case studies of its use.
Resumo:
Spontaneous volunteers always emerge under emergency scenarios and are vital to a successful community response, yet some uncertainty subsists around their role and its inherent acceptance by official entities under emergency scenarios. In our research we have identified that most of the spontaneous volunteers do have none or little support from official entities, hence they end up facing critical problems as situational awareness, safety instructions and guidance, motivation and group organization. We argue that official entities still play a crucial role and should change some of their behaviors regarding spontaneous volunteerism. We aim with this thesis to design a software architecture and a framework in order to implement a solution to support spontaneous volunteerism under emergency scenarios along with a set of guidelines for the design of open information management systems. Together with the collaboration from both citizens and emergency professionals we have been able to attain several important contributions, as the clear identification of the roles taken by both spontaneous volunteers and professionals, the importance of volunteerism in overall community response and the role which open collaborative information management systems have in the community volunteering efforts. These conclusions have directly supported the design guidelines of our software solution proposal. In what concerns to methodology, we first review literature on technologies support to emergencies and how spontaneous volunteers actually challenge these systems. Following, we have performed a field research where we have observed that the emerging of spontaneous volunteer’s efforts imposes new requirements for the design of such systems, which leaded to the creation of a cluster of design guidelines that supported our software solution proposal to address the volunteers’ requirements. Finally we have architected and developed an online open information management tool which has been evaluated via usability engineering methods, usability user tests and heuristic evaluations.
Resumo:
With the current proliferation of sensor equipped mobile devices such as smartphones and tablets, location aware services are expanding beyond the mere efficiency and work related needs of users, evolving in order to incorporate fun, culture and the social life of users. Today people on the move have more and more connectivity and are expected to be able to communicate with their usual and familiar social networks. That means communications not only with their peers and colleagues, friends and family but also with unknown people that might share their interests, curiosities or happen to use the same social network. Through social networks, location aware blogging, cultural mobile applications relevant information is now available at specific geographical locations and open to feedback and conversations among friends as well as strangers. In fact, nowadays smartphone technologies aloud users to post and retrieve content while on the move, often relating to specific physical landmarks or locations, engaging and being engaged in conversations with strangers as much as their own social network. The use of such technologies and applications while on the move can often lead people to serendipitous discoveries and interactions. Throughout our thesis we are engaging on a two folded investigation: how can we foster and support serendipitous discoveries and what are the best interfaces for it? In fact, to read and write content while on the move is a cognitively intensive task. While the map serves the function of orienting the user, it also absorbs most of the user’s concentration. In order to address this kind of cognitive overload issue with Breadcrumbs we propose a 360 degrees interface that enables the user to find content around them by means of scanning the surrounding space with the mobile device. By using a loose metaphor of a periscope, harnessing the power of the smartphone sensors we designed an interactive interface capable of detecting content around the users and display it in the form of 2 dimensional bubbles which diameter depends on their distance from the users. Users will navigate the space in relation to the content that they are curious about, rather than in relation to the traditional geographical map. Through this model we envisage alleviating a certain cognitive overload generated by having to continuously confront a two dimensional map with the real three dimensional space surrounding the user, but also use the content as a navigational filter. Furthermore this alternative mean of navigating space might bring serendipitous discovery about places that user where not aware of or intending to reach. We hence conclude our thesis with the evaluation of the Breadcrumbs application and the comparison of the 360 degrees interface with a traditional 2 dimensional map displayed on the devise screen. Results from the evaluation are compiled in findings and insights for future use in designing and developing context aware mobile applications.
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.