1 resultado para Maximilian III Joseph, Elector of Bavaria, 1727-1777.
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
In Chapter 1, rhodium nanoparticles were supported on multiwalled carbon nanotubes (MWCNTs) and bound to the magnetic core-shell system Fe3O4@TiO2. The composite Fe3O4@TiO2-Rh-MWCNT and the intermediates were characterized by SEM, EDS and TEM. Their catalytic activity was studied using i) the hydrogenation transfer of nitroarenes and cyclohexene in the presence of hydrazine hydrate; ii) the reduction of 2-nitrophenol with NaBH4; and iii) the decoloration of pigments in the presence of hydrogen peroxide. The results were monitored by gas chromatography (i) and UV Visible (ii and iii). In the second chapter, the catalytic activity of six oxidovanadium(V) aroylhydrazone complexes, viz. [VOL1(OEt)][VOL1(OEt)(EtOH)] (1), [VOL2(OEt)] (2), [Et3NH][VO2L1] (3), [VO2(H2L2)]2·EtOH (4), [VOL1(µ -O)VOL1] (5) and [VOL2(µ -O)VOL2] (6) (H2L1 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2hydroxybenzohydrazide and H2L2 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2 aminobenzohydrazide), anchored on nanodiamonds with different treatments, was studied towards the microwave-assisted partial oxidation of 1-phenylethanol to acetophenone in the presence of tert-butyl hydroperoxide (TBHP) as oxidant. A high selectivity for acetophenone was achieved for the optimized conditions. The possibility of recycling and reuse the heterogeneous catalysts was also investigated. In chapter 3, the catalytic activity of gold nanoparticles supported at different metal oxides, such as Fe2O3, Al2O3 ZnO or TiO2, was studied for the above reaction. The effect of the support, quantity of the catalyst and temperature was investigated. The recyclability of the gold catalysts was also studied. In the last chapter, a new copper nanocomposite with functionalized mutiwalled carbon nanotubes (Cu-MWCNT) was synthesized using a microwave assisted polyol method. The characterization was performed using XRD and SEM. The catalytic activity of Cu-MWCNT was studied through the degradation of pigments, such as amaranth, brilliant blue, indigo, tartrazine and methylene blue.