2 resultados para Isolation of NTM

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dirofilaria immitis (Leidy, 1856), an agent of heartworm disease, is an important parasite from both the veterinary standpoint and as a model to study human filariasis. It is a mosquito-borne filarial nematode which inhabits the right ventricle and pulmonary arteries of dogs. D. immitis is an important disease agent on Madeira Island with about 30% of dogs testing positive for this worm. Nevertheless, the vectors of this parasite in Madeira have never been studied, nor has the interaction between pathogen and vector, or the environmental variables that might influence heartworm transmission. Innate susceptibility to infection is only one component of vector competence, and field isolation of naturally infected mosquitoes has shown the capability of D. immitis to exploit a great diversity of vector species under natural conditions. The purpose of this work was to determine which mosquitoes are vectors of heartworm disease, the relation between population density and environment, and the association between immune response of the vector to the filarial parasite. Seasonal abundance of Culex theileri and Culex pipiens molestus was studied. Correlation and canonical correspondence analysis were performed using abundance data of these two species with selected weather variables, including mean temperature, relative humidity and accumulated precipitation. The most important factor determining Cx. theileri abundance was accumulated precipitation, while Cx. pipiens molestus abundance did not have any relationship with weather variables. Field studies were performed to verify whether Cx. theileri Theobald functions as a natural vector of D. immitis on Madeira Island, Portugal. Cx. theileri tested positive for D. immitis for the first time. The same study was made regarding Cx. p. molestus. Two abnormal L2 stage filarial worms were found in Malpighian tubules in field caught Cx. p. molestus. In the laboratory, two strains of Cx. p. molestus were studied for their susceptibility to D. immitis. None presented infective-stage larvae. Finally, because Cx. p. molestus is an autogenous mosquito, we evaluated the reproductive costs when this mosquito mounts an immune response against D. immitis in the absence of a blood meal. This mosquito showed an active immune response when inoculated intrathoracically with microfilariae (mf) of the heartworm. The ovaries from mosquitoes undergoing melanotic encapsulation developed more eggs than those which could not melanize the mf. This fact is contradictory with some previous studies of reproductive costs in Armigeres subalbatus and Ochlerotatus trivittatus, and it was the first time that an autogenous mosquito was used to study this subject.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A headspace solid-phase microextraction (HS-SPME) procedure based on five commercialised fibres (85 μm polyacrylate – PA, 100 μm polydimethylsiloxane – PDMS, 65 μm polydimethylsiloxane/divinylbenzene – PDMS/DVB, 70 μm carbowax/divinylbenzene – CW/DVB and 85 μm carboxen/polydimethylsiloxane – CAR/PDMS) is presented for the characterization of the volatile metabolite profile of four selected Madeira island fruit species, lemon (Citrus limon), kiwi (Actinidia deliciosa), papaya (Carica papaya L.) and Chickasaw plum (Prunus angustifolia). The isolation of metabolites was followed by thermal desorption gas chromatography–quadrupole mass spectrometry (GC–qMS) methodology. The performance of the target fibres was evaluated and compared. The SPME fibre coated with CW/DVB afforded the highest extraction efficiency in kiwi and papaya pulps, while in lemon and plum the same was achieved with PMDS/DVB fibre. This procedure allowed for the identification of 80 compounds, 41 in kiwi, 24 in plums, 23 in papaya and 20 in lemon. Considering the best extraction conditions, the most abundant volatiles identified in kiwi were the intense aldehydes and ethyl esters such as (E)-2-hexenal and ethyl butyrate, while in Chicasaw plum predominate 2-hexenal, 2-methyl-4-pentenal, hexanal, (Z)-3-hexenol and cyclohexylene oxide. The major compounds identified in the papaya pulp were benzyl isothiocyanate, linalool oxide, furfural, hydroxypropanone, linalool and acetic acid. Finally, lemon was shown to be the most divergent of the four fruits, being its aroma profile composed almost exclusively by terpens, namely limonene, γ-terpinene, o-cymene and α-terpinolene. Thirty two volatiles were identified for the first time in the fruit or close related species analysed and 14 volatiles are reported as novel volatile metabolites in fruits. This includes 5 new compounds in kiwi (2-cyclohexene-1,4-dione, furyl hydroxymethyl ketone, 4-hydroxydihydro-2(3H)-furanone, 5-acetoxymethyl-2-furaldehyde and ethanedioic acid), 4 in plum (4-hydroxydihydro-2(3H)-furanone, 5-methyl-2-pyrazinylmethanol, cyclohexylene oxide and 1-methylcyclohexene), 4 in papaya (octaethyleneglycol, 1,2-cyclopentanedione, 3-methyl-1,2-cyclopentanedione and 2-furyl methyl ketone) and 2 in lemon (geranyl farnesate and safranal). It is noteworthy that among the 15 volatile metabolites identified in papaya, 3-methyl-1,2-cyclopentanedione was previously described as a novel PPARγ (peroxisome proliferator-activated receptor γ) agonist, having a potential to minimize inflammation.