9 resultados para HPLC METHOD VALIDATION

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article proposes a simple and sensitive HPLC method with photo-diode array detection for the analysis of organic acids, monomeric polyphenols and furanic compounds in wine samples by direct injection. The chromatographic separation of 8 organic acids, 2 furans and 22 phenolic compounds was carried out with a buffered solution (pH 2.70) and acetonitrile as mobile phases and a difunctionally bonded C18 stationary phase, Atlantis dC18 (250 4.6 mm, 5mm) column. The elution was performed in 12 min for the organic acids and in 60 min for the phenolic compounds, including phenolic acids, stilbenes and flavonoids. Target compounds were detected at 210 nm (organic acids, flavan-3-ols and benzoic acids), 254 nm (ellagic acid), 280 nm (furans and cinnamic acid), 315 nm (hydroxycinnamic acids and trans-resveratrol) and 360 nm (flavonoids). The RSD for the repeatability test (n55) of peak area and retention times were below 3.1 and 0.3%, respectively, for phenolics and below 1.0 and 0.2% for organic acids. The RSDs expressing the reproducibility of the method were higher than for the repeatability results but all below 9.0%. Method accuracy was evaluated by the recovery results, with averaged values between 80 and 104% for polyphenols and 97–105% for organic acids. The calibration curves, obtained by triplicate injection of standard solutions, showed good linearity with regression coefficients higher than 0.9982 for polyphenols and 0.9997 for organic acids. The LOD was in the range of 0.07–0.49 mg/L for polyphenols (cinnamic and gallic acids, respectively) and 0.001–0.046 g/L for organic acids (oxalic and lactic acids, respectively). The method was successfully used to measure and assess the polyphenolic fingerprint and organic acids profile of red, white, rose ´ and fortified wines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A RP-HPLC method with photodiode array detection (DAD) was developed to separate, identify and quantify simultaneously the most representative phenolic compounds present in Madeira and Canary Islands wines. The optimized chromatographic method was carefully validated in terms of linearity, precision, accuracy and sensitivity. A high repeatability and a good stability of phenolics retention times (a3%) were obtained, as well as relative peak area. Also high recoveries were achieved, over 80.3%. Polyphenols calibration curves showed a good linearity (r2 A0.994) within test ranges. Detection limits ranged between 0.03 and 11.5 lg/mL for the different polyphenols. A good repeatability was obtained, with intra-day variations less than 7.9%. The described method was successfully applied to quantify several polyphenols in 26 samples of different kinds of wine (red, ros and white wines) from Madeira and Canary Islands. Gallic acid was by far the most predominant acid. It represents more than 65% of all phenolics, followed by p-coumaric and caffeic acids. The major flavonoid found in Madeira wines was trans-resveratrol. In some wines, (–)-epicatechin was also found in highest amount. Canary wines were shown to be rich in gallic, caffeic and p-coumaric acids and quercetin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a RP-HPLC method for the simultaneous quantification of free amino acids and biogenic amines in liquid food matrices and the results of the application to honey and wine samples obtained from different production processes and geographic origins. The developed methodology is based on a pre-column derivatization with o-phthaldialdehyde carried out in the sample injection loop. The compounds were separated in a Nova-Pack RP-C18 column (150 mm × 3.9 mm, 4 μm) at 35 °C. The mobile phase used was a mixture of phase A: 10 mM sodium phosphate buffer (pH 7.3), methanol and tetrahydrofuran (91:8:1); and phase B: methanol and phosphate buffer (80:20), with a flow rate of 1.0 ml/min. Fluorescence detection was used at an excitation wavelength of 335 nm and an emission wavelength of 440 nm. The separation and quantification of 19 amino acids and 6 amines was carried out in a single run as their OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The method showed to be adequate for the purpose, with an average RSD of 2% for the different amino acids; detection limits varying between 0.71 mg/l (Asn) and 8.26 mg/l (Lys) and recovery rates between 63.0% (Cad) and 98.0% (Asp). The amino acids present at the highest concentration in honey and wine samples were phenylalanine and arginine, respectively. Only residual levels of biogenic amines were detected in the analysed samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tomato (Lycopersicon esculentum L.) is one of the main constituents of the Mediterranean diet. Its consumption has been proposed to reduce the risk of cardiovascular diseases and certain types of cancer. It is therefore one of the most popular and extensively consumed vegetable crop worldwide. To gain insights on the potential of Lycopersicon esculentum L. as bioactive food, two analytical methodologies were developed to determine the levels of the lipophilic -tocopherol, α-tocopherol, β-carotene, lycopene; and hydrophilic antioxidants ascorbic acid. The quantification of total carotenoids (β-carotene and lycopene) was assessed through a liquid–liquid ultrasound assisted extraction (LL-USAE) in combination with ultraviolet-visible spectroscopy (UV-Vis), according to method of mean, for total carotenoids (λmáx = 450 nm. The ultra-high performance liquid chromatographic using both photodiode array and fluorescence detection (UHPLC-PDA/FLR), allows the identification and quantification of the target lipophilic and hydrophilic antioxidants. This methodology UHPLC-PDA/FLR is fast, simple and revealed a high sensitivity for the compounds under study. The limits of detection (LODs) and quantification (LOQs) obtained were much lower (about 10 times) than the reported in literature. The method LL-USAE/UV-Vis was validated and applied to different tomato foodstuffs. The results reveal a small increase of carotenoids content during maturation, reaching the maximum level when ripe. These results complement those obtained by the ORAC and TBARS assays that show an increase of antioxidant capacity during maturation. The LODs ans LOQs obtained were also about 10 times lower than reported in literature. The carotenoid content was also evaluated by LL-USAE/UV-Vis in different tomatoes varieties. Regional variety present the high carotenoid level, followed by campari and gordal, and at last grape. This methodology was also applied to different processed food samples containing tomatoes derivatives. Highest carotenoids content were obtained in concentrated tomato foodstuffs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An ultra-fast and improved analytical methodology based on microextraction by packed sorbent (MEPS) combined with ultra-performance LC (UPLC) was developed and validated for determination of (E)-resveratrol in wines. Important factors affecting the performance of MEPS such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles, and sample volume were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (50–250mL) in one extraction cycle (extract–discard) and in a short time period (about 3 min for the entire sample preparation step). (E)-Resveratrol was eluted by 1 250mL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a highstrength silica HSS T3 analytical column (100 mm 2.1 mm, 1.8mm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, extraction yield, accuracy, and inter/intra-day precision, using a Madeira wine sample (ET) spiked with (E)-resveratrol at concentration levels ranging from 5 to 60mg/mL. Validation experiments revealed very good recovery rate of 9575.8% RSD, good linearity with r2 values 40.999 within the established concentration range, excellent repeatability (0.52%), and reproducibility (1.67%) values (expressed as RSD), thus demonstrating the robustness and accuracy of the MEPSC8/UPLC-photodiode array (PDA) method. The LOD of the method was 0.21mg/mL, whereas the LOQ was 0.68mg/mL. The validated methodology was applied to 30 commercial wines (24 red wines and six white wines) from different grape varieties, vintages, and regions. On the basis of the analytical validation, the MEPSC8/UPLC-PDA methodology shows to be an improved, sensitive, and ultra-fast approach for determination of (E)-resveratrol in wines with high resolving power within 6 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the development and optimization of a modified Quick, Easy, Cheap Effective, Rugged and Safe (QuEChERS) based extraction technique coupled with a clean-up dispersive-solid phase extraction (dSPE) as a new, reliable and powerful strategy to enhance the extraction efficiency of free low molecular-weight polyphenols in selected species of dietary vegetables. The process involves two simple steps. First, the homogenized samples are extracted and partitioned using an organic solvent and salt solution. Then, the supernatant is further extracted and cleaned using a dSPE technique. Final clear extracts of vegetables were concentrated under vacuum to near dryness and taken up into initial mobile phase (0.1% formic acid and 20% methanol). The separation and quantification of free low molecular weight polyphenols from the vegetable extracts was achieved by ultrahigh pressure liquid chromatography (UHPLC) equipped with a phodiode array (PDA) detection system and a Trifunctional High Strength Silica capillary analytical column (HSS T3), specially designed for polar compounds. The performance of the method was assessed by studying the selectivity, linear dynamic range, the limit of detection (LOD) and limit of quantification (LOQ), precision, trueness, and matrix effects. The validation parameters of the method showed satisfactory figures of merit. Good linearity (View the MathML sourceRvalues2>0.954; (+)-catechin in carrot samples) was achieved at the studied concentration range. Reproducibility was better than 3%. Consistent recoveries of polyphenols ranging from 78.4 to 99.9% were observed when all target vegetable samples were spiked at two concentration levels, with relative standard deviations (RSDs, n = 5) lower than 2.9%. The LODs and the LOQs ranged from 0.005 μg mL−1 (trans-resveratrol, carrot) to 0.62 μg mL−1 (syringic acid, garlic) and from 0.016 μg mL−1 (trans-resveratrol, carrot) to 0.87 μg mL−1 ((+)-catechin, carrot) depending on the compound. The method was applied for studying the occurrence of free low molecular weight polyphenols in eight selected dietary vegetables (broccoli, tomato, carrot, garlic, onion, red pepper, green pepper and beetroot), providing a valuable and promising tool for food quality evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study provides a versatile validated method to determine the total vitamin C content, as the sum of the contents of L-ascorbic acid (L-AA) and dehydroascorbic acid (DHAA), in several fruits and vegetables and its degradability with storage time. Seven horticultural crops from two different origins were analyzed using an ultrahigh-performance liquid chromatographic–photodiode array (UHPLC-PDA) system, equipped with a new trifunctional high strength silica (100% silica particle) analytical column (100 mm×2.1 mm, 1.7 μm particle size) using 0.1% (v/v) formic acid as mobile phase, in isocratic mode. This new stationary phase, specially designed for polar compounds, overcomes the problems normally encountered in HPLC and is suitable for the analysis of large batches of samples without L-AA degradation. In addition, it proves to be an excellent alternative to conventional C18 columns for the determination of L-AA in fruits and vegetables. The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, accuracy, and inter/intraday precision. Validation experiments revealed very good recovery rate of 96.6±4.4% for L-AA and 103.1±4.8 % for total vitamin C, good linearity with r2-values >0.999 within the established concentration range, excellent repeatability (0.5%), and reproducibility (1.6%) values. The LOD of the method was 22 ng/mL whereas the LOQ was 67 ng/mL. It was possible to demonstrate that L-AA and DHAA concentrations in the different horticulture products varied oppositely with time of storage not always affecting the total amount of vitamin C during shelf-life. Locally produced fruits have higher concentrations of vitamin C, compared with imported ones, but vegetables showed the opposite trend. Moreover, this UHPLC-PDA methodology proves to be an improved, simple, and fast approach for determining the total content of vitamin C in various food commodities, with high sensitivity, selectivity, and resolving power within 3 min of run analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This manuscript describes the development and validation of an ultra-fast, efficient, and high throughput analytical method based on ultra-high performance liquid chromatography (UHPLC) equipped with a photodiode array (PDA) detection system, for the simultaneous analysis of fifteen bioactive metabolites: gallic acid, protocatechuic acid, (−)-catechin, gentisic acid, (−)-epicatechin, syringic acid, p-coumaric acid, ferulic acid, m-coumaric acid, rutin, trans-resveratrol, myricetin, quercetin, cinnamic acid and kaempferol, in wines. A 50-mm column packed with 1.7-μm particles operating at elevated pressure (UHPLC strategy) was selected to attain ultra-fast analysis and highly efficient separations. In order to reduce the complexity of wine extract and improve the recovery efficiency, a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a new macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis™ HLB), was performed prior to UHPLC–PDA analysis. The calibration curves of bioactive metabolites showed good linearity within the established range. Limits of detection (LOD) and quantification (LOQ) ranged from 0.006 μg mL−1 to 0.58 μg mL−1, and from 0.019 μg mL−1 to 1.94 μg mL−1, for gallic and gentisic acids, respectively. The average recoveries ± SD for the three levels of concentration tested (n = 9) in red and white wines were, respectively, 89 ± 3% and 90 ± 2%. The repeatability expressed as relative standard deviation (RSD) was below 10% for all the metabolites assayed. The validated method was then applied to red and white wines from different geographical origins (Azores, Canary and Madeira Islands). The most abundant component in the analysed red wines was (−)-epicatechin followed by (−)-catechin and rutin, whereas in white wines syringic and p-coumaric acids were found the major phenolic metabolites. The method was completely validated, providing a sensitive analysis for bioactive phenolic metabolites detection and showing satisfactory data for all the parameters tested. Moreover, was revealed as an ultra-fast approach allowing the separation of the fifteen bioactive metabolites investigated with high resolution power within 5 min.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10–15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R2 regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R2) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12–15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12–15 years. It is applicable to European populations or populations of European ancestry.