3 resultados para GLUCOSIDASE

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes is a worldwide health issue that has been expanding mainly in developed countries. It is characterized by abnormal levels of blood sugar due to several factors. The most common are resistance to insulin and the production of defective insulin which exerts little or no effect. Its most common symptoms include tissue damage to several systems due to elevated levels of blood sugar. One of the key enzymes in hydrocarbon metabolism is α-glucosidase (EC 3.2.1.20). It catalyzes the breakdown of complex carbohydrates into their respective monomers (glucose) which allows them to be absorbed. In this work, caffeoyl quinic acids and their metabolites were analyzed as potential inhibitors for α-glucosidase. The search for the best inhibitor was conducted using molecular docking. The affinity of each compound was compared to the inhibitor present in the crystal structure of the protein. As no inhibitor with a similar affinity was´found, a new approach was used, in situ drug design. It was not possible to achieve an inhibitor capable of competing with the one present in the crystal structure of the enzyme, which is also its current commercial inhibitor. It is possible to draw some conclusions as to which functional groups interact best with certain residues of the active site. This work was divided into three main sections. The first section, Diabetes, serves as an introduction to what is Diabetes, its symptoms and/or side effects and how caffeoyl quinic acids could be used as a treatment. The second section, Caffeoylquinic acids and their metabolites as inhibitors for Alfa-glucosidase, corresponds to the search through molecular docking of caffeoyl quinic acids as inhibitors for α-glucosidase and what was possible to draw from this search. The last section, In situ design of an inhibitor for α-glucosidase (EC 3.2.1.20), corresponds to the in situ drug design study and what it achieved. The representation of each of the molecules used as a ligand can be found in the Annexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O consumo de frutas e vegetais tem sido associado à prevenção de várias doenças crónicas, nomeadamente doenças cardiovasculares, diabetes, cancro e outras que envolvam processos inflamatórios. As bagas destacam-se pelo seu elevado conteúdo em polifenóis, cujas propriedades antioxidantes contribuem para a manutenção da saúde humana. O presente trabalho teve como alvo de estudo as diferentes partes morfológicas (bagas e folhas) de espécies produtoras de bagas, nomeadamente Elaeagnus umbellata, a Rubus grandofolius, a Sambucus lancolata, a Vaccinium padifolium e a Vaccinium cylindraceum, tendo em vista a sua valorização como produtos alimentares e/ou nutracêuticos. A caracterização físico-química destas espécies permitiu determinar que o teor total de sólidos solúveis (TSS) das bagas varia de 4,4 a 16,5 °Brix. As bagas demonstraram ser a parte morfológica com teor de humidade mais elevado. A análise do perfil fenólico por HPLC-DAD-ESI/MSn, no modo negativo, dos extractos metanólicos mostrou que as folhas apresentam maior conteúdo de compostos fenólicos, comparativamente às bagas. Os ácidos hidroxicinâmicos (derivados dos ácidos cafeicos, cumárico e ferúlico), os ácidos cafeoilquínicos, bem como os flavonóis-O-glicosilados (derivados da quercetina e canferol) predominam nestas espécies. A análise pelo modo positivo permitiu a identificação de antocianinas glicosiladas (delfinidina, cianidina, petunidina, peonidina e malvidina) nas bagas e folhas jovens da espécie Vaccinium padifolium. Os ensaios in vitro de simulação da digestão gastrointestinal permitiram compreender a sua influência na actividade antioxidante dos extractos. Após a digestão, as folhas continuam a apresentar maior capacidade antioxidante do que as bagas. Adicionalmente, concluiu-se que as enzimas presentes neste processo têm menor influência do que o pH e a força iónica dos sucos digestivos. O estudo do efeito inibitório in vitro dos extractos sobre a actividade de enzimas responsáveis pelo metabolismo dos hidratos de carbono permitiu determinar que os viii Joana Pinto (2016) extractos foram mais eficientes na inibição da actividade da α-glucosidase do que na inibição da actividade da α-amilase.