5 resultados para Fortified
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
The maturation of Madeira wines usually involves exposure to relatively high temperatures and humidity levels >70%, which affect the aroma and flavor composition and lead to the formation of the typical and characteristic bouquet of these wines. To estimate the levels of sotolon [3-hydroxy4,5-dimethyl-2(5 H )-furanone] and their behavior over time, 86 aged Madeira wines samples (1-25 years old), with different sugar concentrations, respectively, 90 g L-1 for Boal, 110 g L-1 for Malvazia, 25 g L -1 for Sercial, and 65 g L-1 for Verdelho varieties, were analyzed. Isolation was performed by liquid-liquid extraction with dichloromethane followed by chromatographic analysis by GC-MS. The reproducibility of the method was found to be 4.9%. The detection and quantification limits were 1.2 and 2.0 µgL-1, respectively. The levels of sotolon found ranged from not detected to 2000 µgL-1 for wines between 1 and 25 years old. It was observed that during aging, the concentration of sotolon increased with time in a linear fashion ( r ) 0.917). The highest concentration of sotolon was found in wines with the highest residual sugar contents, considering the same time of storage. The results show that there is a strong correlation between sotolon and sugar derivatives: furfural, 5-methylfurfural, 5-hydroxymethylfurfural, and 5-ethoxymethylfurfural. These compounds are also well correlated with wine aging. These findings indicate that the kinetics of sotolon formation is closely related with residual sugar contents, suggesting that this molecule may come from a component like sugar.
Resumo:
An analytical methodology based on headspace solid phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography—time-of-flight mass spectrometry (GC × GC–ToFMS) was developed for the identification and quantification of the toxic contaminant ethyl carbamate (EC) directly in fortified wines. The method performance was assessed for dry/medium dry and sweet/medium sweet model wines, and for quantification purposes, calibration plots were performed for both matrices using the ion extraction chromatography (IEC) mode (m/z 62). Good linearity was obtained with a regression coefficient (r2) higher than 0.981. A good precision was attained (R.S.D. <20%) and low detection limits (LOD) were achieved for dry (4.31 μg/L) and sweet (2.75 μg/L) model wines. The quantification limits (LOQ) and recovery for dry wines were 14.38 μg/L and 88.6%, whereas for sweet wines were 9.16 μg/L and 99.4%, respectively. The higher performance was attainted with sweet model wine, as increasing of glucose content improves the volatile compound in headspace, and a better linearity, recovery and precision were achieved. The analytical methodology was applied to analyse 20 fortified Madeira wines including different types of wine (dry, medium dry, sweet, and medium sweet) obtained from several harvests in Madeira Island (Portugal). The EC levels ranged from 54.1 μg/L (medium dry) to 162.5 μg/L (medium sweet).
Resumo:
Recently, ethyl carbamate (EC) was reclassified by the International Agency for Research on Cancer (IARC) as "probably carcinogenic to humans" and occurs mainly in fermented beverages. Nowadays many countries have set limit values for EC in alcoholic beverages. In this sense and taking into account the low concentrations found in alcoholic beverages, the scientific community has shown interest for the development of new analytical methods, whereby its simplification plays an important role in the EC control and prevention. Firstly, a simple, rapid and sensitive methodology was developed for the EC quantification in fortified wines by microextraction by packed sorbent (MEPS) with gas chromatography coupled with a mass spectrometer detector (GC-MS). This method showed good linearity (R2 = 0.999) and sensitivity (LOD = 1.5 μg/L). The accuracy of the method was assessed by means of repeatability and reproducibility (RSD < 7%). Moreover, a good recovery has been demonstrated (97 – 106%) as well as its applicability (16 fortified wines). Thus, the developed methodology has proven to be an excellent approach for routine quantification of EC in fortified wines. The EC evolution was also evaluated during a year and half of Madeira wine ageing submitted to two traditional ageing methods, estufagem and canteiro, in order to evaluate the formation kinetic. The results revealed that estufagem process increased the formation kinetic and promoted a linear increase of the EC concentration (R2 ≥ 0.977), proportionally to the ageing time (4 months). However, when the wines are firstly submitted to estufagem and then undergo canteiro ageing, the EC values remain almost constant during the following 14 months. The results suggest that estufagem does not seem to be the critical factor in the EC formation, but instead the amount of precursors in the medium.
Resumo:
Madeira wine is a fortified wine with impact in the Madeira Island’s economy. Similarly to other wines, its acidity should be well controlled in order to ensure Madeira wine quality, mostly the volatile acidity. Due to Madeira wine complex flavour, it is crucial to get a better knowledge about the volatile acidity impact in its features, namely determine the perception limit of acetic acid and ethyl acetate, as both are the main contributors for volatile acidity. Firstly, the olfactory perception threshold of volatile acidity was assessed by a trained and an untrained panel, using 5 and 10 years-old Sercial and Malvasia wines. Moreover, the current work also presents the evolution of organic acids, acetic acid and ethyl acetate during 540 days of ageing of Madeira wines (Malvasia, Bual, Verdelho and Sercial), comparing the same wines aged by both traditional ageing processes: canteiro and estufagem. Other wine samples, aged in wood casks (canteiro) for at least 5 years, were also evaluated. HS-SPME followed by GC-MS analysis was used to determine ethyl acetate concentration and IEC-HPLC-DAD was used for the organic acids determination, including acetic acid. The results indicated that acetic acid and ethyl acetate olfactory perception threshold depends essentially on wine’s age. Concerning acetic acid, the untrained panel was in average 5.45 g/L (5 years-old) and 6.22 g/L (10 years-old). Training the expert panel to recognize acetic acid odour, the values decreased for 1.44 g/L (5 years-old) and 1.87 g/L (10 years-old), but still remained higher than the established volatile acidity legal limits. Ethyl acetate threshold was similar for both panels (in average 327.97 mg/L). Both compounds tend to increase exponentially with age, being more evident in sweet wines. Organic acids in young Madeira wines depend mostly on the nature of grape varieties, but this difference is minimized with wine ageing.
Resumo:
The influence of the age in the volatile composition of Madeira wines made with Boal, Malvazia, Sercial and Verdelho varieties and aged in oak barrel during 1, 11 and 25 years old was been studied. For this purpose, the evolution of volatile compounds: higher alcohols, ethyl esters, fatty acids, furan compounds, enolic compounds, γ-lactones, dioxanes and dioxolanes, of the four most utilised varieties were determined using liquid–liquid extraction with dichloromeihane. Octan-3-ol was used as internal standard. The wines made with these varieties showed great differences in sugar content and small variations on pH and alcoholic degree. The results show that during ageing, the concentration of fatty acids ethyl esters, acetates and fatty acids decrease significantly contrarily to the great increase of ethyl esters of diprotic acids. There is a strong correlation between sotolon, 2-furfural, 5-methyl-2-furfural, 5-hydroxymethyl-2-furfural and 5-ethoxymethyl-2-furfural with wine ageing. These findings indicate that these compounds can be used as ageing wine markers. Among the molecules studied, sotolon [3-hydroxy-4,5-dimethyl-2(5H)-furanone] was one of the few molecules present in concentrations above the perception threshold in Madeira wines. 5-Eihoxymethyl-2-furfural formed from 5-hydroxymethyl-2-furfural and 2-furfural, derived from sugars, are also involved in the aroma of sweet fortified white wines aged in oxidative conditions. The sensory properties change significantly after long periods of conservation.