3 resultados para Eye pattern
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
This thesis reports on research done for the integration of eye tracking technology into virtual reality environments, with the goal of using it in rehabilitation of patients who suffered from stroke. For the last few years, eye tracking has been a focus on medical research, used as an assistive tool to help people with disabilities interact with new technologies and as an assessment tool to track the eye gaze during computer interactions. However, tracking more complex gaze behaviors and relating them to motor deficits in people with disabilities is an area that has not been fully explored, therefore it became the focal point of this research. During the research, two exploratory studies were performed in which eye tracking technology was integrated in the context of a newly created virtual reality task to assess the impact of stroke. Using an eye tracking device and a custom virtual task, the system developed is able to monitor the eye gaze pattern changes over time in patients with stroke, as well as allowing their eye gaze to function as an input for the task. Based on neuroscientific hypotheses of upper limb motor control, the studies aimed at verifying the differences in gaze patterns during the observation and execution of the virtual goal-oriented task in stroke patients (N=10), and also to assess normal gaze behavior in healthy participants (N=20). Results were found consistent and supported the hypotheses formulated, showing that eye gaze could be used as a valid assessment tool on these patients. However, the findings of this first exploratory approach are limited in order to fully understand the effect of stroke on eye gaze behavior. Therefore, a novel model-driven paradigm is proposed to further understand the relation between the neuronal mechanisms underlying goal-oriented actions and eye gaze behavior.
Resumo:
Hop(HumuluslupulusL.,Cannabaceaefamily)isprizedforitsessentialoilcontents,usedin beer production and, more recently, in biological and pharmacological applications. In this work,a methodinvolvingheadspace solid-phase microextractionand gas chromatography– mass spectrometry was developed and optimized to establish the terpenoid (monoterpenes and sesquiterpenes) metabolomic pattern of hop-essential oil derived from Saaz variety as a mean to explore this matrix as a powerful biological source for newer, more selective, biodegradable and naturally produced antimicrobial and antioxidant compounds. Different parameters affecting terpenoid metabolites extraction by headspace solid-phase microextraction were considered and optimized: type of fiber coatings, extraction temperature, extraction time, ionic strength, and sample agitation. In the optimized method, analytes were extracted for 30 min at 40 C in the sample headspace with a 50/30 m divinylbenzene/carboxen/polydimethylsiloxane coating fiber. The methodology allowed the identification of a total of 27 terpenoid metabolites, representing 92.5% of the total Saaz hop-essential oil volatile terpenoid composition. The headspace composition was dominated by monoterpenes (56.1%, 13 compounds), sesquiterpenes (34.9%, 10), oxygenated monoterpenes (1.41%, 3), and hemiterpenes (0.04%, 1) some of which can probably contribute to the hop of Saaz variety aroma. Mass spectrometry analysis revealed that the main metabolites are the monoterpene -myrcene (53.0±1.1% of the total volatile fraction), and the cyclic sesquiterpenes, -humulene (16.6 ± 0.8%), and -caryophyllene (14.7 ± 0.4%), which together represent about 80% of the total volatile fraction from the hop-essential oil. Thesefindingssuggestthatthismatrixcanbeexploredasapowerfulbiosourceofterpenoid metabolites.
Resumo:
In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.