3 resultados para Extraction techniques
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
In present research, headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC–qMS), was evaluated as a reliable and improved alternative to the commonly used liquid–liquid extraction (LLE) technique for the establishment of the pattern of hydrolytically released components of 7 Vitis vinifera L. grape varieties, commonly used to produce the world-famous Madeira wine. Since there is no data available on their glycosidic fractions, at a first step, two hydrolyse procedures, acid and enzymatic, were carried out using Boal grapes as matrix. Several parameters susceptible of influencing the hydrolytic process were studied. The best results, expressed as GC peak area, number of identified components and reproducibility, were obtained using ProZym M with b-glucosidase activity at 35 °C for 42 h. For the extraction of hydrolytically released components, HS-SPME technique was evaluated as a reliable and improved alternative to the conventional extraction technique, LLE (ethyl acetate). HS-SPME using DVB/CAR/PDMS as coating fiber displayed an extraction capacity two fold higher than LLE (ethyl acetate). The hydrolyzed fraction was mainly characterized by the occurrence of aliphatic and aromatic alcohols, followed by acids, esters, carbonyl compounds, terpenoids, and volatile phenols. Concerning to terpenoids its contribution to the total hydrolyzed fraction is highest for Malvasia Cândida (23%) and Malvasia Roxa (13%), and their presence according previous studies, even at low concentration, is important from a sensorial point of view (can impart floral notes to the wines), due to their low odor threshold (μg/L). According to the obtained data by principal component analysis (PCA), the sensorial properties of Madeira wines produced by Malvasia Cândida and Malvasia Roxa could be improved by hydrolysis procedure, since their hydrolyzed fraction is mainly characterized by terpenoids (e.g. linalool, geraniol) which are responsible for floral notes. Bual and Sercial grapes are characterized by aromatic alcohols (e.g. benzyl alcohol, 2-phenylethyl alcohol), so an improvement in sensorial characteristics (citrus, sweet and floral odors) of the corresponding wines, as result of hydrolytic process, is expected.
Resumo:
In this study the feasibility of different extraction procedures was evaluated in order to test their potential for the extraction of the volatile (VOCs) and semi-volatile constituents (SVOCs) from wines. In this sense, and before they could be analysed by gas chromatography–quadrupole first stage masss spectrometry (GC–qMS), three different high-throughput miniaturized (ad)sorptive extraction techniques, based on solid phase extraction (SPE), microextraction by packed sorbents (MEPS) and solid phase microextraction (SPME), were studied for the first time together, for the extraction step. To achieve the most complete volatile and semi-volatile signature, distinct SPE (LiChrolut EN, Poropak Q, Styrene-Divinylbenzene and Amberlite XAD-2) and MEPS (C2, C8, C18, Silica and M1 (mixed C8-SCX)) sorbent materials, and different SPME fibre coatings (PA, PDMS, PEG, DVB/CAR/PDMS, PDMS/DVB, and CAR/PDMS), were tested and compared. All the extraction techniques were followed by GC–qMS analysis, which allowed the identification of up to 103 VOCs and SVOCs, distributed by distinct chemical families: higher alcohols, esters, fatty acids, carbonyl compounds and furan compounds. Mass spectra, standard compounds and retention index were used for identification purposes. SPE technique, using LiChrolut EN as sorbent (SPELiChrolut EN), was the most efficient method allowing for the identification of 78 VOCs and SVOCs, 63 and 19 more than MEPS and SPME techniques, respectively. In MEPS technique the best results in terms of number of extractable/identified compounds and total peak areas of volatile and semi-volatile fraction, were obtained by using C8 resin whereas DVB/CAR/PDMS was revealed the most efficient SPME coating to extract VOCs and SVOCs from Bual wine. Diethyl malate (18.8 ± 3.2%) was the main component found in wine SPELiChrolut EN extracts followed by ethyl succinate (13.5 ± 5.3%), 3-methyl-1-butanol (13.2 ± 1.7%), and 2-phenylethanol (11.2 ± 9.9%), while in SPMEDVB/CAR/PDMS technique 3-methyl-1-butanol (43.3 ± 0.6%) followed by diethyl succinate (18.9 ± 1.6%), and 2-furfural (10.4 ± 0.4%), are the major compounds. The major VOCs and SVOCs isolated by MEPSC8 were 3-methyl-1-butanol (26.8 ± 0.6%, from wine total volatile fraction), diethyl succinate (24.9 ± 0.8%), and diethyl malate (16.3 ± 0.9%). Regardless of the extraction technique, the highest extraction efficiency corresponds to esters and higher alcohols and the lowest to fatty acids. Despite some drawbacks associated with the SPE procedure such as the use of organic solvents, the time-consuming and tedious sampling procedure, it was observed that SPELiChrolut EN, revealed to be the most effective technique allowing the extraction of a higher number of compounds (78) rather than the other extraction techniques studied.
Resumo:
A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE-LD/LVI-GC–qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03–28.96 μg L−1) and HS-SPME (0.02–20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg L−and from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared. Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.