2 resultados para Equation of prediction
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10–15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R2 regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R2) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12–15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12–15 years. It is applicable to European populations or populations of European ancestry.
Resumo:
In order to differentiate and characterize Madeira wines according to main grape varieties, the volatile composition (higher alcohols, fatty acids, ethyl esters and carbonyl compounds) was determined for 36 monovarietal Madeira wine samples elaborated from Boal, Malvazia, Sercial and Verdelho white grape varieties. The study was carried out by headspace solid-phase microextraction technique (HS-SPME), in dynamic mode, coupled with gas chromatography–mass spectrometry (GC–MS). Corrected peak area data for 42 analytes from the above mentioned chemical groups was used for statistical purposes. Principal component analysis (PCA) was applied in order to determine the main sources of variability present in the data sets and to establish the relation between samples (objects) and volatile compounds (variables). The data obtained by GC–MS shows that the most important contributions to the differentiation of Boal wines are benzyl alcohol and (E)-hex-3-en-1-ol. Ethyl octadecanoate, (Z)-hex-3-en-1-ol and benzoic acid are the major contributions in Malvazia wines and 2-methylpropan-1-ol is associated to Sercial wines. Verdelho wines are most correlated with 5-(ethoxymethyl)-furfural, nonanone and cis-9-ethyldecenoate. A 96.4% of prediction ability was obtained by the application of stepwise linear discriminant analysis (SLDA) using the 19 variables that maximise the variance of the initial data set.