5 resultados para Computer aided design.
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
In many creative and technical areas, professionals make use of paper sketches for developing and expressing concepts and models. Paper offers an almost constraint free environment where they have as much freedom to express themselves as they need. However, paper does have some disadvantages, such as size and not being able to manipulate the content (other than remove it or scratch it), which can be overcome by creating systems that can offer the same freedom people have from paper but none of the disadvantages and limitations. Only in recent years has the technology become massively available that allows doing precisely that, with the development in touch‐sensitive screens that also have the ability to interact with a stylus. In this project a prototype was created with the objective of finding a set of the most useful and usable interactions, which are composed of combinations of multi‐touch and pen. The project selected Computer Aided Software Engineering (CASE) tools as its application domain, because it addresses a solid and well‐defined discipline with still sufficient room for new developments. This was the result from the area research conducted to find an application domain, which involved analyzing sketching tools from several possible areas and domains. User studies were conducted using Model Driven Inquiry (MDI) to have a better understanding of the human sketch creation activities and concepts devised. Then the prototype was implemented, through which it was possible to execute user evaluations of the interaction concepts created. Results validated most interactions, in the face of limited testing only being possible at the time. Users had more problems using the pen, however handwriting and ink recognition were very effective, and users quickly learned the manipulations and gestures from the Natural User Interface (NUI).
Resumo:
All over the world, organizations are becoming more and more complex, and there’s a need to capture its complexity, so this is when the DEMO methodology (Design and Engineering Methodology for Organizations), created and developed by Jan L. G. Dietz, reaches its potential, which is to capture the structure of business processes in a coherent and consistent form of diagrams with their respective grammatical rules. The creation of WAMM (Wiki Aided Meta Modeling) platform was the main focus of this thesis, and had like principal precursor the idea to create a Meta-Editor that supports semantic data and uses MediaWiki. This prototype Meta-Editor uses MediaWiki as a receptor of data, and uses the ideas created in the Universal Enterprise Adaptive Object Model and the concept of Semantic Web, to create a platform that suits our needs, through Semantic MediaWiki, which helps the computer interconnect information and people in a more comprehensive, giving meaning to the content of the pages. The proposed Meta-Modeling platform allows the specification of the abstract syntax i.e., the grammar, and concrete syntax, e.g., symbols and connectors, of any language, as well as their model types and diagram types. We use the DEMO language as a proofof-concept and example. All such specifications are done in a coherent and formal way by the creation of semantic wiki pages and semantic properties connecting them.
Resumo:
Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.
Resumo:
As the world evolves, organizations are becoming more and more complex, and the need to understand that complexity is increasing as well. With this demand, arises organizational engineering, which is a subject that emerged with the purpose to make organizations easier to understand, by putting in practice the concept of organizational self-awareness, which means that that the collaborators who are part of an organization, need to understand it and know what their role in it is. The DEMO methodology (Design Engineering Methodology for Organizations), came up with the purpose of representing these organizations’ self-awareness, through the definition and creation of consistent and coherent diagrams. Semantic wikis have features that can help in enterprise modelling. UEAOM (Universal Enterprise Adaptive Organization Model) is a model that allows the specification and dynamic evolution of languages, meta-models, models, and their representations as diagrams and tables. In this project, it was implemented a system based on UEAOM, and Semantic Media Wiki which allows a graphical creation and edition of diagrams. UEAOM can be divided into the meta-modeling level where a language is defined, and the modelling level where instances of classes of that language are created. The system we developed focuses on the modeling level, but will takes as a basis the project that focuses on meta-modeling. The DEMO language was used as an example for the implementation and tests of a graphical editor, based in web technologies and SVG, integrated with SemanticMediaWiki to allow an intuitive, coherent and consistent navigation and editing of organization diagrams.
Resumo:
As digital systems move away from traditional desktop setups, new interaction paradigms are emerging that better integrate with users’ realworld surroundings, and better support users’ individual needs. While promising, these modern interaction paradigms also present new challenges, such as a lack of paradigm-specific tools to systematically evaluate and fully understand their use. This dissertation tackles this issue by framing empirical studies of three novel digital systems in embodied cognition – an exciting new perspective in cognitive science where the body and its interactions with the physical world take a central role in human cognition. This is achieved by first, focusing the design of all these systems on a contemporary interaction paradigm that emphasizes physical interaction on tangible interaction, a contemporary interaction paradigm; and second, by comprehensively studying user performance in these systems through a set of novel performance metrics grounded on epistemic actions, a relatively well established and studied construct in the literature on embodied cognition. The first system presented in this dissertation is an augmented Four-in-a-row board game. Three different versions of the game were developed, based on three different interaction paradigms (tangible, touch and mouse), and a repeated measures study involving 36 participants measured the occurrence of three simple epistemic actions across these three interfaces. The results highlight the relevance of epistemic actions in such a task and suggest that the different interaction paradigms afford instantiation of these actions in different ways. Additionally, the tangible version of the system supports the most rapid execution of these actions, providing novel quantitative insights into the real benefits of tangible systems. The second system presented in this dissertation is a tangible tabletop scheduling application. Two studies with single and paired users provide several insights into the impact of epistemic actions on the user experience when these are performed outside of a system’s sensing boundaries. These insights are clustered by the form, size and location of ideal interface areas for such offline epistemic actions to occur, as well as how can physical tokens be designed to better support them. Finally, and based on the results obtained to this point, the last study presented in this dissertation directly addresses the lack of empirical tools to formally evaluate tangible interaction. It presents a video-coding framework grounded on a systematic literature review of 78 papers, and evaluates its value as metric through a 60 participant study performed across three different research laboratories. The results highlight the usefulness and power of epistemic actions as a performance metric for tangible systems. In sum, through the use of such novel metrics in each of the three studies presented, this dissertation provides a better understanding of the real impact and benefits of designing and developing systems that feature tangible interaction.