2 resultados para Complex Design Space
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
In a world where organizations are ever more complex the need for the knowledge of the organizational self is a growing necessity. The DEMO methodology sets a goal in achieving the specification of the organizational self capturing the essence of the organization in way independent of its implementation and also coherent, consistent, complete, modular and objective. But having such organization self notion is of little meaning if this notion is not shared by the organization actors. To achieve this goal in a society that has grown attached to technology and where time is of utmost importance, using a tool such as a semantic Wikipedia may be the perfect way of making the information accessible. However, to establish DEMO methodology in such platform there is a need to create bridges between its modeling components and semantic Wikipedia. It’s in that aspect that our thesis focuses, trying to establish and implement, using a study case, the principles of a way of transforming the DEMO methodology diagrams in comprehensive pages on semantic Wikipedia but keeping them as abstract as possible to allow expansibility and generalization to all diagrams without losing any valuable information so that, if that is the wish, those diagrams may be recreated from the semantic pages and make this process a full cycle.
Resumo:
A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embraces areas like resource allocation, scheduling, timetabling or vehicle routing. Constraint programming is a form of declarative programming in the sense that instead of specifying a sequence of steps to execute, it relies on properties of the solutions to be found, which are explicitly defined by constraints. The idea of constraint programming is to solve problems by stating constraints which must be satisfied by the solutions. Constraint programming is based on specialized constraint solvers that take advantage of constraints to search for solutions. The success and popularity of complex problem solving tools can be greatly enhanced by the availability of friendly user interfaces. User interfaces cover two fundamental areas: receiving information from the user and communicating it to the system; and getting information from the system and deliver it to the user. Despite its potential impact, adequate user interfaces are uncommon in constraint programming in general. The main goal of this project is to develop a graphical user interface that allows to, intuitively, represent constraint satisfaction problems. The idea is to visually represent the variables of the problem, their domains and the problem constraints and enable the user to interact with an adequate constraint solver to process the constraints and compute the solutions. Moreover, the graphical interface should be capable of configure the solver’s parameters and present solutions in an appealing interactive way. As a proof of concept, the developed application – GraphicalConstraints – focus on continuous constraint programming, which deals with real valued variables and numerical constraints (equations and inequalities). RealPaver, a state-of-the-art solver in continuous domains, was used in the application. The graphical interface supports all stages of constraint processing, from the design of the constraint network to the presentation of the end feasible space solutions as 2D or 3D boxes.