3 resultados para Cameras
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Every time more we hear in our everyday statements like "I'm stressed!", "Don´t worry me more than I am." But in what sense can we use technology to combat these congestions that we deal with daily? Well, one way would be to use technology to create objects, systems or applications that can spoil us and preferably be imperceptible by the user and, for this we have the ubiquitous computing and nurturant technologies. The ubiquitous computing is increasingly discussed as well as ways to make your computer more subtle in the view of the user, which is subject of research and development. The use of technology as a source of relaxation and spoil us is a strand that is being explored in the context of nurturant technologies. Accordingly, this thesis is focused on the development of an object and several applications with which we can interact. The object and applications have the purpose to spoil us and help us relax after a long day at work or in some situation more stressful. The object developed employs technologies like the use of accelerometers and the applications developed employs communications between computers and Web cameras. This thesis begins with a brief introduction to the areas of research and others that we can include in this thesis, such as ubiquitous computing and the nurturant technologies, providing yet general information on stress and ways to mitigate it. Later is described some of the work already done and that influenced this thesis as well as the prototypes developed and the experiences performed, ending with a general conclusion and future work.
Resumo:
Image stitching is the process of joining several images to obtain a bigger view of a scene. It is used, for example, in tourism to transmit to the viewer the sensation of being in another place. I am presenting an inexpensive solution for automatic real time video and image stitching with two web cameras as the video/image sources. The proposed solution relies on the usage of several markers in the scene as reference points for the stitching algorithm. The implemented algorithm is divided in four main steps, the marker detection, camera pose determination (in reference to the markers), video/image size and 3d transformation, and image translation. Wii remote controllers are used to support several steps in the process. The built‐in IR camera provides clean marker detection, which facilitates the camera pose determination. The only restriction in the algorithm is that markers have to be in the field of view when capturing the scene. Several tests where made to evaluate the final algorithm. The algorithm is able to perform video stitching with a frame rate between 8 and 13 fps. The joining of the two videos/images is good with minor misalignments in objects at the same depth of the marker,misalignments in the background and foreground are bigger. The capture process is simple enough so anyone can perform a stitching with a very short explanation. Although real‐time video stitching can be achieved by this affordable approach, there are few shortcomings in current version. For example, contrast inconsistency along the stitching line could be reduced by applying a color correction algorithm to every source videos. In addition, the misalignments in stitched images due to camera lens distortion could be eased by optical correction algorithm. The work was developed in Apple’s Quartz Composer, a visual programming environment. A library of extended functions was developed using Xcode tools also from Apple.
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.