6 resultados para CAMARA DE LECHO FLUIDO

em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesta dissertação tento comprovar que a escrita poética de Vasco Graça Moura está repleta de “murmúrios [im]possíveis” com as artes plásticas; ou seja, que a sua poesia estabelece um diálogo fluido e permanente com a pintura, a fotografia e o desenho, do qual resulta a transfiguração do real e, por conseguinte, a reinterpretação do mundo. Com este intuito, analiso os suportes da escrita (Babo, 2006) assim como os conceitos de ecfrase (Ceia, 2005), rizoma (Deleuze e Guatarri, 2006) e desconstrução (Ceia, 2005), que fundamentam esta “arte combinatória” (Moura, 1983) e solidificam “os múltiplos casamentos do Vasco Graça Moura com as artes de encantamento e sedução” (Veiga, 2000). Esta investigação empreende, portanto, num diálogo com a escrita poética de Vasco Graça Moura, a pintura referida, as fotografias de Gérard Castello-Lopes (Em demanda de Moura – Giraldomachias, 1999) e de Ana Gaiaz (Variações metálicas, 2004), e os desenhos de Jorge Pinheiro (sombras com aquiles e pentesileia, 1999), tentando corroborar a presença da relação cúmplice entre poesia e artes plásticas e acompanhar as suas sucessivas “operações de desmontagem” (Moura, 2007).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, a simple and sensitive methodology based on dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography with quadrupole mass detection (GC–qMSD), was developed and optimized for the determination of volatile (VOCs) and semi-volatile (SVOCs) compounds from different alcoholic beverages: wine, beer and whisky. Key experimental factors influencing the equilibrium of the VOCs and SVOCs between the sample and the SPME fibre, as the type of fibre coating, extraction time and temperature, sample stirring and ionic strength, were optimized. The performance of five commercially available SPME fibres was evaluated and compared, namely polydimethylsiloxane (PDMS, 100 μm); polyacrylate (PA, 85 μm); polydimethylsiloxane/divinylbenzene (PDMS/DVB, 65 μm); carboxen™/polydimethylsiloxane (CAR/PDMS, 75 μm) and the divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR/PDMS, 50/30 μm) (StableFlex). An objective comparison among different alcoholic beverages has been established in terms of qualitative and semi-quantitative differences on volatile and semi-volatile compounds. These compounds belong to several chemical families, including higher alcohols, ethyl esters, fatty acids, higher alcohol acetates, isoamyl esters, carbonyl compounds, furanic compounds, terpenoids, C13-norisoprenoids and volatile phenols. The optimized extraction conditions and GC–qMSD, lead to the successful identification of 44 compounds in white wines, 64 in beers and 104 in whiskys. Some of these compounds were found in all of the examined beverage samples. The main components of the HS-SPME found in white wines were ethyl octanoate (46.9%), ethyl decanoate (30.3%), ethyl 9-decenoate (10.7%), ethyl hexanoate (3.1%), and isoamyl octanoate (2.7%). As for beers, the major compounds were isoamyl alcohol (11.5%), ethyl octanoate (9.1%), isoamyl acetate (8.2%), 2-ethyl-1-hexanol (5.9%), and octanoic acid (5.5%). Ethyl decanoate (58.0%), ethyl octanoate (15.1%), ethyl dodecanoate (13.9%) followed by 3-methyl-1-butanol (1.8%) and isoamyl acetate (1.4%) were found to be the major VOCs in whisky samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergicasthmarepresentsanimportantpublichealthissuewithsignificantgrowthovertheyears,especially in the paediatric population. Exhaled breath is a non-invasive, easily performed and rapid method forobtainingsamplesfromthelowerrespiratorytract.Inthepresentmanuscript,themetabolicvolatile profiles of allergic asthma and control children were evaluated by headspace solid-phase microextraction combined with gas chromatography–quadrupole mass spectrometry (HS-SPME/GC–qMS). The lack ofstudiesinbreathofallergicasthmaticchildrenbyHS-SPMEledtothedevelopmentofanexperimental design to optimize SPME parameters. To fulfil this objective, three important HS-SPME experimental parameters that influence the extraction efficiency, namely fibre coating, temperature and time extractions were considered. The selected conditions that promoted higher extraction efficiency corresponding to the higher GC peak areas and number of compounds were: DVB/CAR/PDMS coating fibre, 22◦C and 60min as the extraction temperature and time, respectively. The suitability of two containers, 1L Tedlar® bags and BIOVOC®, for breath collection and intra-individual variability were also investigated. The developed methodology was then applied to the analysis of children exhaled breath with allergicasthma(35),fromwhich13hadalsoallergicrhinitis,andhealthycontrolchildren(15),allowing to identify 44 volatiles distributed over the chemical families of alkanes (linear and ramified) ketones, aromatic hydrocarbons, aldehydes, acids, among others. Multivariate studies were performed by Partial LeastSquares–DiscriminantAnalysis(PLS–DA)usingasetof28selectedmetabolitesanddiscrimination between allergic asthma and control children was attained with a classification rate of 88%. The allergic asthma paediatric population was characterized mainly by the compounds linked to oxidative stress, such as alkanes and aldehydes. Furthermore, more detailed information was achieved combining the volatile metabolic data, suggested by PLS–DA model, and clinical data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hop(HumuluslupulusL.,Cannabaceaefamily)isprizedforitsessentialoilcontents,usedin beer production and, more recently, in biological and pharmacological applications. In this work,a methodinvolvingheadspace solid-phase microextractionand gas chromatography– mass spectrometry was developed and optimized to establish the terpenoid (monoterpenes and sesquiterpenes) metabolomic pattern of hop-essential oil derived from Saaz variety as a mean to explore this matrix as a powerful biological source for newer, more selective, biodegradable and naturally produced antimicrobial and antioxidant compounds. Different parameters affecting terpenoid metabolites extraction by headspace solid-phase microextraction were considered and optimized: type of fiber coatings, extraction temperature, extraction time, ionic strength, and sample agitation. In the optimized method, analytes were extracted for 30 min at 40 C in the sample headspace with a 50/30 m divinylbenzene/carboxen/polydimethylsiloxane coating fiber. The methodology allowed the identification of a total of 27 terpenoid metabolites, representing 92.5% of the total Saaz hop-essential oil volatile terpenoid composition. The headspace composition was dominated by monoterpenes (56.1%, 13 compounds), sesquiterpenes (34.9%, 10), oxygenated monoterpenes (1.41%, 3), and hemiterpenes (0.04%, 1) some of which can probably contribute to the hop of Saaz variety aroma. Mass spectrometry analysis revealed that the main metabolites are the monoterpene -myrcene (53.0±1.1% of the total volatile fraction), and the cyclic sesquiterpenes, -humulene (16.6 ± 0.8%), and -caryophyllene (14.7 ± 0.4%), which together represent about 80% of the total volatile fraction from the hop-essential oil. Thesefindingssuggestthatthismatrixcanbeexploredasapowerfulbiosourceofterpenoid metabolites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE-LD/LVI-GC–qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03–28.96 μg L−1) and HS-SPME (0.02–20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg L−and from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared. Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic asthma represents an important public health issue, most common in the paediatric population, characterized by airway inflammation that may lead to changes in volatiles secreted via the lungs. Thus, exhaled breath has potential to be a matrix with relevant metabolomic information to characterize this disease. Progress in biochemistry, health sciences and related areas depends on instrumental advances, and a high throughput and sensitive equipment such as comprehensive two-dimensional gas chromatography–time of flight mass spectrometry (GC × GC–ToFMS) was considered. GC × GC–ToFMS application in the analysis of the exhaled breath of 32 children with allergic asthma, from which 10 had also allergic rhinitis, and 27 control children allowed the identification of several hundreds of compounds belonging to different chemical families. Multivariate analysis, using Partial Least Squares-Discriminant Analysis in tandem with Monte Carlo Cross Validation was performed to assess the predictive power and to help the interpretation of recovered compounds possibly linked to oxidative stress, inflammation processes or other cellular processes that may characterize asthma. The results suggest that the model is robust, considering the high classification rate, sensitivity, and specificity. A pattern of six compounds belonging to the alkanes characterized the asthmatic population: nonane, 2,2,4,6,6-pentamethylheptane, decane, 3,6-dimethyldecane, dodecane, and tetradecane. To explore future clinical applications, and considering the future role of molecular-based methodologies, a compound set was established to rapid access of information from exhaled breath, reducing the time of data processing, and thus, becoming more expedite method for the clinical purposes.