2 resultados para Branch and bound method
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
In Chapter 1, rhodium nanoparticles were supported on multiwalled carbon nanotubes (MWCNTs) and bound to the magnetic core-shell system Fe3O4@TiO2. The composite Fe3O4@TiO2-Rh-MWCNT and the intermediates were characterized by SEM, EDS and TEM. Their catalytic activity was studied using i) the hydrogenation transfer of nitroarenes and cyclohexene in the presence of hydrazine hydrate; ii) the reduction of 2-nitrophenol with NaBH4; and iii) the decoloration of pigments in the presence of hydrogen peroxide. The results were monitored by gas chromatography (i) and UV Visible (ii and iii). In the second chapter, the catalytic activity of six oxidovanadium(V) aroylhydrazone complexes, viz. [VOL1(OEt)][VOL1(OEt)(EtOH)] (1), [VOL2(OEt)] (2), [Et3NH][VO2L1] (3), [VO2(H2L2)]2·EtOH (4), [VOL1(µ -O)VOL1] (5) and [VOL2(µ -O)VOL2] (6) (H2L1 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2hydroxybenzohydrazide and H2L2 = 3,5-di-tert-butyl-2-hydroxybenzylidene)-2 aminobenzohydrazide), anchored on nanodiamonds with different treatments, was studied towards the microwave-assisted partial oxidation of 1-phenylethanol to acetophenone in the presence of tert-butyl hydroperoxide (TBHP) as oxidant. A high selectivity for acetophenone was achieved for the optimized conditions. The possibility of recycling and reuse the heterogeneous catalysts was also investigated. In chapter 3, the catalytic activity of gold nanoparticles supported at different metal oxides, such as Fe2O3, Al2O3 ZnO or TiO2, was studied for the above reaction. The effect of the support, quantity of the catalyst and temperature was investigated. The recyclability of the gold catalysts was also studied. In the last chapter, a new copper nanocomposite with functionalized mutiwalled carbon nanotubes (Cu-MWCNT) was synthesized using a microwave assisted polyol method. The characterization was performed using XRD and SEM. The catalytic activity of Cu-MWCNT was studied through the degradation of pigments, such as amaranth, brilliant blue, indigo, tartrazine and methylene blue.
Resumo:
A large number of evidences correlate elevated levels of homocysteine (Hcys) with a higher cardiovascular diseases (CVDs) risk, especially, atherosclerosis. Similarly, abnormal low levels of the vitamins B6, B9 and B12 are associated to an instability in the methionine cycle with an over production of Hcys. Thus, biomedical sciences are looking forward for a cheaper, faster, precise and accurate analytical methodology to quantify these compounds in a suitable format for the clinical environment. Therefore the objective of this study was the development of a simple, inexpensive and appropriate methodology to use at the clinical level. To achieve this goal, a procedure integrating a digitally controlled (eVol®) microextraction by packed sorbent (MEPS) and an ultra performance liquid chromatography (UPLC) coupled to a photodiode array detector (PDA) was developed to identify and quantify Hcys vitamins B6, B9 and B12. Although different conditions were assayed, we were not able to combine Hcys with the vitamins in the same analytical procedure, and so we proceeded to the optimization of two methods differing only in the composition of the gradient of the mobile phase and the injected volume. It was found that MEPS did not bring any benefit to the quantification of the Hcys in the plasma. Therefore, we developed and validate an alternative method that uses the direct injection of treated plasma (reduced and precipitated). This same method was evaluated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), matrix effect and precision (intra-and inter-day) and applied to the determination of Hcys in a group composed by patients presenting augmented CVD risk. Good results in terms of selectivity and linearity (R2> 0.9968) were obtained, being the values of LOD and LOQ 0.007 and 0.21 mol / L, respectively. The intra-day precision (1.23-3.32%), inter-day precision (5.43-6.99%) and the recovery rate (82.5 to 93.1%) of this method were satisfactory. The matrix effect (>120%) was, however, higher than we were waiting for. Using this methodology it was possible to determine the amount of Hcys in real plasma samples from individuals presenting augmented CVD risk. Regarding the methodology developed for vitamins, despite the optimization of the extraction technique and the chromatographic conditions, it was found that the levels usually present in plasma are far below the sensitivity we obtained. Therefore, further optimizations of the methodology developed are needed. As conclusion, part of the objectives of this study was achieved with the development of a quick, simple and cheaper method for the quantification of Hcys.