3 resultados para Biomaterial. Poly (lactic acid). Synthesis. Polycondensation. Drug delivery systems
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
One of the main goals in Nanomedicine is to create innovative drug delivery systems (DDS) capable of delivering drugs into a specific location with high efficiency. In the development of DDS, some essential properties are desired, such as biocompatibility and biodegradability. Furthermore, an ideal DDS should be able to deliver a drug in a controlled manner and minimize its side effects. These two objectives are still a challenge for researchers all around the world. Nanogels are an excellent vehicle to use in drug delivery and several other applications due to their biocompatibility. They are polymer-based networks, chemically or physically crosslinked, with at least 80-90% water in their composition. Their properties can be tuned, like the nanogel size, multifunctionality and degradability. Nanogels are capable of carrying in their interior bioactive molecules and deliver them into cells. The main objective of this project was to produce nanogels for the delivery of anticancer drugs with the ability of responding to existent stimuli inside cells (cellresponsiveness nanogels) and/or of controlled drug delivery. The nanogels were mainly based on alginate (AG), a natural biopolymer, and prepared using emulsion approaches. After their synthesis, they were used to encapsulate doxorubicin (Dox) which was chosen as a model drug. In the first part of the experimental work, disulfide-linked AG nanogels were prepared and, as expected, were redox-sensitive to a reducing environment like the intracellular medium. In the second part, AG nanogels crosslinked with both calcium ions and cationic poly(amidoamine) dendrimers were developed with improved sustained drug delivery. The prepared nanogels were characterized in terms of size, chemical composition, morphology, and drug delivery behavior (under redox/pH stimuli). The in vitro cytotoxicity of the nanogels was also tested against CAL-72 cells (an osteosarcoma cell line).
Resumo:
Tissue engineering is an important branch of regenerative medicine that uses cells, materials (scaffolds), and suitable biochemical and physicochemical factors to improve or replace specific biological functions. In particular, the control of cell behavior (namely, of cell adhesion, proliferation and differentiation) is a key aspect for the design of successful therapeutical approaches. In this study, poly(lactic-co-glycolic acid) (PLGA) fiber mats were prepared using the electrospinning technology (the fiber diameters were in the micrometer range). Furthermore, the electrospun fiber mats thus formed were functionalized using the layer-by- layer (LbL) technique with chitosan and alginate (natural and biodegradable polyelectrolytes having opposite charges) as a mean for the immobilization of pDNA/dendrimer complexes. The polyelectrolyte multilayer deposition was confirmed by fluorescence spectroscopy using fluorescent-labeled polyelectrolytes. The electrospun fiber mats coated with chitosan and alginate were successfully loaded with complexes of pDNA and poly(amidoamine) (PAMAM) dendrimers (generation 5) and were able of releasing them in a controlled manner along time. In addition, these mats supported the adhesion and proliferation of NIH 3T3 cells and of human mesenchymal stem cells (hMSCs) in their surface. Transfection experiments using a pDNA encoding for luciferase showed the ability of the electrospun fiber mats to efficiently serve as gene delivery systems. When a pDNA encoding for bone morphogenetic protein-2 (BMP-2) was used, the osteoblastic differentiation of hMSCs cultured on the surface of the mats was promoted. Taken together, the results revealed that merging the electrospinning technique with the LbL technique, can be a suitable methodology for the creation of biological active matrices for bone tissue engineering.
Resumo:
Gene therapy, which involves the transfer of nucleic acid into target cells in patients, has become one of the most important and widely explored strategies to treat a variety of diseases, such as cancer, infectious diseases and genetic disorders. Relative to viral vectors that have high immunogenicity, toxicity and oncogenicity, non-viral vectors have gained a lot of interest in recent years. This is largely due to their ability to mimic viral vector features including the capacity to overcome extra- and intra-cellular barriers and to enhance transfection efficiency. Polyethyleneimine (PEI) has been extensively investigated as a non-viral vector. This cationic polymer, which is able to compact nucleic acid through electrostatic interactions and to transport it across the negatively charged cell membranes, has been shown to effectively transfect nucleic acid into different cell lines. Moreover, entrapment of gold nanoparticles (Au NPs) into such an amine-terminated polymer template has been shown to significantly enhance gene transfection efficiency. In this work, a novel non-viral nucleic acid vector system for enhanced and targeted nucleic acid delivery applications was developed. The system was based on the functionalization of PEI with folic acid (FA; for targeted delivery to cancer cells overexpressing FA receptors on their surface) using polyethylene glycol (PEG) as a linker molecule. This was followed by the preparation of PEI-entrapped Au NPs (Au PENPs; for enhancement of transfection efficiency). In the synthesis process, the primary amines of PEI were first partially modified with fluorescein isothiocyanate (FI) using a molar ratio of 1:7. The formed PEI-FI conjugate was then further modified with either PEG or PEGylated FA using a molar ratio of 1:1. This process was finally followed by entrapment of Au NPs into the modified polymers. The resulting conjugates and Au PENPs were characterized by several techniques, namely Nuclear Magnetic Resonance, Dynamic Light Scattering and Ultraviolet-Visible Spectroscopy, to assess their physicochemical properties. In the cell biology studies, the synthesized conjugates and their respective Au PENPs were shown to be non-toxic towards A2780 human ovarian carcinoma cells. The role of these materials as gene delivery agents was lastly evaluated. In the gene delivery studies, the A2780 cells were successfully transfected with plasmid DNA using the different vector systems. However, FA-modification and Au NPs entrapment were not determinant factors for improved transfection efficiency. In the gene silencing studies, on the other hand, the Au PENPs were shown to effectively deliver small interfering RNA, thereby reducing the expression of the B-cell lymphoma 2 protein. Based on these results, we can say that the systems synthesized in this work show potential for enhanced and targeted gene therapy applications.