2 resultados para Biologically-inspired computing.
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
Ubiquitous computing raises new usability challenges that cut across design and development. We are particularly interested in environments enhanced with sensors, public displays and personal devices. How can prototypes be used to explore the users' mobility and interaction, both explicitly and implicitly, to access services within these environments? Because of the potential cost of development and design failure, these systems must be explored using early assessment techniques and versions of the systems that could disrupt if deployed in the target environment. These techniques are required to evaluate alternative solutions before making the decision to deploy the system on location. This is crucial for a successful development, that anticipates potential user problems, and reduces the cost of redesign. This thesis reports on the development of a framework for the rapid prototyping and analysis of ubiquitous computing environments that facilitates the evaluation of design alternatives. It describes APEX, a framework that brings together an existing 3D Application Server with a modelling tool. APEX-based prototypes enable users to navigate a virtual world simulation of the envisaged ubiquitous environment. By this means users can experience many of the features of the proposed design. Prototypes and their simulations are generated in the framework to help the developer understand how the user might experience the system. These are supported through three different layers: a simulation layer (using a 3D Application Server); a modelling layer (using a modelling tool) and a physical layer (using external devices and real users). APEX allows the developer to move between these layers to evaluate different features. It supports exploration of user experience through observation of how users might behave with the system as well as enabling exhaustive analysis based on models. The models support checking of properties based on patterns. These patterns are based on ones that have been used successfully in interactive system analysis in other contexts. They help the analyst to generate and verify relevant properties. Where these properties fail then scenarios suggested by the failure provide an important aid to redesign.
Resumo:
A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250 μL) in five extraction cycle and in a short time period (about 5 min for the entire sample preparation step). Under optimized conditions, excellent linearity View the MathML source(Rvalues2>0.9963), limits of detection of 0.006 μg mL−1 (quercetin) to 0.013 μg mL−1 (myricetin) and precision within 0.5–3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0–97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8 ± 3.7 μg mL−1). Quercetin (0.97 ± 0.41 μg mL−1) and kaempferol (0.66 ± 0.24 μg mL−1) were found in a lower concentration. The optimized MEPSC8 method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPSC8 approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9 ± 0.9% to 92.1 ± 0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform.