2 resultados para Aviarios - Iluminação
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
A iluminação pública é uma área importante de consumo energético. Actualmente existem uma variedade de soluções tecnológicas que permitem diminuir esse consumo e o correspondente impacte ambiental. No entanto, estas soluções tecnológicas nem sempre são utilizadas devido à falta de suporte informático que permita o planeamento para instalação de redes de iluminação, e/ou actualização das tecnologias utilizadas na rede de iluminação existente. Este relatório apresenta uma ferramenta de simulação do consumo de energia na iluminação pública, através da definição de cenários pelo utilizador, nos quais são simuladas a escolha de lâmpadas, luminárias e sistemas de controlo para cada ramal de electricidade, representados sobre um plano geográfico, que permita o cálculo de indicadores de apoio à decisão. A solução apresentada neste relatório, desenvolvida sobre o sistema de web mapping Google Maps, e sobre a plataforma de desenvolvimento para a web Ruby on Rails, permite o desenho sobre o mapa de uma rede de iluminação pública, e o cálculo em tempo de execução do custo e consumo de energia dos cenários de iluminação simulados pelo utilizador. Através de expansões futuras esta ferramenta poderá contribuir para a eficiente optimização de redes de iluminação pública.
Resumo:
O objetivo deste projeto foi o de realizar a sincronização de pelo menos quatro câmaras individuais, ajustando dinamicamente o frame rate de operação de cada câmara, tendo por base a família de sensores de imagem CMOS NanEye da empresa Awaiba, numa plataforma FPGA com interface USB3. Durante o projeto analisou-se, com a assistência de um supervisor da Awaiba, o sistema core de captura de imagem existente, baseado em VHDL. Foi estudado e compreendido o princípio do ajuste dinâmico do frame rate das câmaras. Tendo sido então desenvolvido o módulo de controlo da câmara, em VHDL, e um algoritmo de ajuste dinâmico do frame rate, sendo este implementado junto com a plataforma de processamento e interface da FPGA. Foi criado um módulo para efetuar a monitorização da frequência de operação de cada câmara, medindo o período de cada linha numa frame, tendo por base um sinal de relógio de valor conhecido. A frequência é ajustada variando o nível de tensão aplicado ao sensor com base no erro entre o período da linha medido e o período pretendido. Para garantir o funcionamento conjunto de múltiplas câmaras em modo síncrono foi implementada uma interface Master-Slave entre estas. Paralelamente ao módulo anteriormente descrito, implementou-se um sistema de controlo automático de iluminação com base na análise de regiões de interesse em cada frame captada por uma câmara NanEye. A intensidade de corrente aplicada às fontes de iluminação acopladas à câmara é controlada dinamicamente com base no nível de saturação dos pixéis analisados em cada frame. Foram desenvolvidas e implementadas variantes do algoritmo de controlo e o seu desempenho foi avaliado em laboratório. Os resultados obtidos na prática evidenciam que a solução implementada cumpre os requisitos de controlo e ajuste da frequência de operação de múltiplas câmaras. Mostrou ser um método de controlo capaz de manter um erro de sincronização médio de 3,77 μs mesmo na presença de variações de temperatura de aproximadamente 50 °C. Foi também demonstrado que o sistema de controlo de iluminação é capaz de proporcionar uma experiência de visualização adequada, alcançando erros menores que 3% e uma velocidade de ajuste máxima inferior a 1 s.