1 resultado para Algebra of Errors
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Filtro por publicador
- Aberdeen University (3)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (25)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (91)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Brock University, Canada (6)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (23)
- CentAUR: Central Archive University of Reading - UK (83)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (23)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (13)
- Digital Peer Publishing (4)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (16)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Escola Superior de Educação de Paula Frassinetti (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Georgian Library Association, Georgia (1)
- Glasgow Theses Service (1)
- Harvard University (2)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (8)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (7)
- Nottingham eTheses (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (4)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório da Produção Científica e Intelectual da Unicamp (9)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (90)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (11)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (28)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (9)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (29)
- Université de Montréal, Canada (23)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (177)
- University of Queensland eSpace - Australia (80)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
This thesis presents general methods in non-Gaussian analysis in infinite dimensional spaces. As main applications we study Poisson and compound Poisson spaces. Given a probability measure μ on a co-nuclear space, we develop an abstract theory based on the generalized Appell systems which are bi-orthogonal. We study its properties as well as the generated Gelfand triples. As an example we consider the important case of Poisson measures. The product and Wick calculus are developed on this context. We provide formulas for the change of the generalized Appell system under a transformation of the measure. The L² structure for the Poisson measure, compound Poisson and Gamma measures are elaborated. We exhibit the chaos decomposition using the Fock isomorphism. We obtain the representation of the creation, annihilation operators. We construct two types of differential geometry on the configuration space over a differentiable manifold. These two geometries are related through the Dirichlet forms for Poisson measures as well as for its perturbations. Finally, we construct the internal geometry on the compound configurations space. In particular, the intrinsic gradient, the divergence and the Laplace-Beltrami operator. As a result, we may define the Dirichlet forms which are associated to a diffusion process. Consequently, we obtain the representation of the Lie algebra of vector fields with compact support. All these results extends directly for the marked Poisson spaces.