3 resultados para API (Application Programming Interface)
em Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal
Resumo:
A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embraces areas like resource allocation, scheduling, timetabling or vehicle routing. Constraint programming is a form of declarative programming in the sense that instead of specifying a sequence of steps to execute, it relies on properties of the solutions to be found, which are explicitly defined by constraints. The idea of constraint programming is to solve problems by stating constraints which must be satisfied by the solutions. Constraint programming is based on specialized constraint solvers that take advantage of constraints to search for solutions. The success and popularity of complex problem solving tools can be greatly enhanced by the availability of friendly user interfaces. User interfaces cover two fundamental areas: receiving information from the user and communicating it to the system; and getting information from the system and deliver it to the user. Despite its potential impact, adequate user interfaces are uncommon in constraint programming in general. The main goal of this project is to develop a graphical user interface that allows to, intuitively, represent constraint satisfaction problems. The idea is to visually represent the variables of the problem, their domains and the problem constraints and enable the user to interact with an adequate constraint solver to process the constraints and compute the solutions. Moreover, the graphical interface should be capable of configure the solver’s parameters and present solutions in an appealing interactive way. As a proof of concept, the developed application – GraphicalConstraints – focus on continuous constraint programming, which deals with real valued variables and numerical constraints (equations and inequalities). RealPaver, a state-of-the-art solver in continuous domains, was used in the application. The graphical interface supports all stages of constraint processing, from the design of the constraint network to the presentation of the end feasible space solutions as 2D or 3D boxes.
Resumo:
In many creative and technical areas, professionals make use of paper sketches for developing and expressing concepts and models. Paper offers an almost constraint free environment where they have as much freedom to express themselves as they need. However, paper does have some disadvantages, such as size and not being able to manipulate the content (other than remove it or scratch it), which can be overcome by creating systems that can offer the same freedom people have from paper but none of the disadvantages and limitations. Only in recent years has the technology become massively available that allows doing precisely that, with the development in touch‐sensitive screens that also have the ability to interact with a stylus. In this project a prototype was created with the objective of finding a set of the most useful and usable interactions, which are composed of combinations of multi‐touch and pen. The project selected Computer Aided Software Engineering (CASE) tools as its application domain, because it addresses a solid and well‐defined discipline with still sufficient room for new developments. This was the result from the area research conducted to find an application domain, which involved analyzing sketching tools from several possible areas and domains. User studies were conducted using Model Driven Inquiry (MDI) to have a better understanding of the human sketch creation activities and concepts devised. Then the prototype was implemented, through which it was possible to execute user evaluations of the interaction concepts created. Results validated most interactions, in the face of limited testing only being possible at the time. Users had more problems using the pen, however handwriting and ink recognition were very effective, and users quickly learned the manipulations and gestures from the Natural User Interface (NUI).
Resumo:
This thesis examines the concept of tie strength and investigates how it can be determined on the fly in the Facebook Social Network Service (SNS) by a system constructed using the standard developer API. We analyze and compare two different models: the first one is an adaptation of previous literature (Gilbert & Karahalios, 2009), the second model is built from scratch and based on a dataset obtained from an online survey. This survey took the form of a Facebook application that collected subjective ratings of the strength of 1642 ties (friendships) from 85 different participants. The new tie strength model was built based on this dataset by using a multiple regression method. We saw that the new model performed slightly better than the original adapted model, plus it had the advantage of being easier to implement. In conclusion, this thesis has shown that tie strength models capable of serving as useful friendship predictors are easily implementable in a Facebook application via standard API calls. In addition to a new tie strength model, the methodology adopted in this work permitted observation of the weights of each predictive variable used in the model, increasing the visibility of the factors that affects peoples’ relationships in online social networks.