415 resultados para Centro de Ciências Exatas e da Engenharia
Resumo:
Neste trabalho estudamos várias construções do sistema dos números reais. Antes porém, começamos por abordar a evolução do conceito de número, destacando três diferentes aspectos da evolução do conceito de número real. Relacionado com este tema, dedicamos dois capítulos, deste trabalho, à apresentação das teorias que consideramos assumir maior importância, nomeadamente: a construção do sistema dos números reais por cortes na recta ou secções no conjunto dos números racionais, avançada por Dedekind, e a construção do número real como classe de equivalência de sucessões fundamentais de números racionais, ideia protagonizada por Cantor. Posteriormente, e de uma forma mais sintetizada do que nas anteriores, apresentamos outras construções, onde procuramos clarificar a ideia fundamental subjacente ao conceito de número real. Finalmente utilizamos o método axiomático com o intuito de mostrar a unicidade do sistema dos números reais, isto é, concluir finalmente que existe um corpo completo e ordenado, e apenas um a menos de um isomorfismo, do conjunto dos números reais.
Resumo:
Neste trabalho estudamos a fundamentação numérica da Análise em Portugal, centrando particularmente este estudo nos trabalhos de José Anastácio da Cunha, Francisco Gomes Teixeira e Vicente Gonçalves. Num capítulo introdutório apresentamos uma perspectiva cronológica da procura de uma fundamentação rigorosa para a matemática, com o intuito de enquadrar historicamente as obras destes matemáticos Portugueses e reconhecer possíveis influências prestadas por trabalhos de outros autores. Relacionado com Anastácio da Cunha, analisamos os aspectos fundamentais da sua obra Principios Mathematicos, procurando evidenciar os resultados mais importantes avançados pelo autor, bem como as suas preocupações axiomáticas que não eram usuais no século XVIII, em que se insere a sua obra. Neste trabalho foi igualmente efectuada uma análise às quatro edições do Curso de Analyse Infinitesimal — Calculo Integral de Francisco Gomes Teixeira, particularmente centrada na definição do conceito de número irracional. Finalmente, analisamos o Curso de Álgebra Superior de Vicente Gonçalves, particularmente as duas últimas edições. A 2a edição do referido Curso foi objecto de duras críticas por parte de Neves Real e um dos objectivos deste trabalho foi o de procurar analisar essas críticas e verificar até que ponto influenciaram a reformulação de alguns aspectos da 3a edição.
Resumo:
Jorge Nuno Silva
Resumo:
Ludwig Streit
Resumo:
O propósito principal desta tese é a extensão do espaço S′ (IR) das distribuições temperadas de Schwartz, usando o mesmo método de dualidade utilizado por Laurent Schwartz na sua Teoria das Distribuições (ver [Sch66]). Neste sentido, construímos um espaço de ultradistribuições exponenciais, X′, que é fechado para os operadores de derivação, translação complexa e transformação de Fourier. Para além destes operadores serem lineares e contínuos de X′ em X′, a translação complexa e a transformação de Fourier definem um isomorfismo vectorial e topológico neste espaço de ultradistribuições o que, como sabemos, generaliza o belo resultado de Schwartz para as distribuições temperadas. Estudamos as propriedades topológicas de X′ e demonstramos que o espaço S′ (IR) está contido com injecção canónica contínua e densa no nosso espaço de ultradistribuições exponenciais. A construção do espaço X′ baseia-se na estruturação de um espaço de funções teste X, que se injecta canónica, contínua e densamente em S (IR) . Este espaço X é um limite projectivo maximal de um espectro projectivo, constituído por espaços localmente convexos; definimos X′ como sendo o dual forte de X. Por fim, identificamos algumas ultradistribuições de X′, obtemos algumas séries de multipolos convergentes neste espaço e vemos que estas séries têm grande aplicabilidade na resolução de equações diferenciais ordinárias.
Resumo:
João Bernardo de Sena Esteves Falcão e Cunha
Resumo:
Graham Hall
Resumo:
Sistemas dinâmicos são todos os sistemas que evoluem no tempo, qualquer que seja a sua natureza, isto é, sistemas fisícos, biológicos, químicos, sociais, económicos, etc.. Esta evoluçãoo pode ser descrita (modelada) por equaçõess de diferenças, uma vez que esse tempo é muitas vezes medido em intervalos discretos. As equações de diferenças aparecem também quando se estuda métodos para a discretização de equações diferenciais. Assim, este trabalho tem por principal objectivo estudar as soluções de alguns tipos de equações de diferenças. Para isso, começa-se por introduzir o conceito de diferença e a sua relação com as equações de diferenças. Em seguida, determina-se a solução geral das todas as equações lineares de primeira ordem, bem como o estudo do seu comportamento assimptótico. Prossegue-se, desenvolvendo as principais técnicas para determinar a soluçãoo de equações de diferenças lineares de qualquer ordem. Em particular, estudam-se as equações com coeficientes constantes. Depois de se desenvolver a teoria básica dos sistemas lineares de equações de diferenças, particulariza-se aos sistemas lineares autónomos,com apenas duas variáveis dependentes, fazendo assim o estudo do comportamento das soluções no plano de fases. Por fim, utiliza-se a transformada Z como uma ferramenta que permite resolver equações de diferenças, em especial as equações de tipo convolução.
Resumo:
Francisco Miguel A. C. de Sousa Dionísio
Resumo:
This work is divided in two parts. In the first part we develop the theory of discrete nonautonomous dynamical systems. In particular, we investigate skew-product dynamical system, periodicity, stability, center manifold, and bifurcation. In the second part we present some concrete models that are used in ecology/biology and economics. In addition to developing the mathematical theory of these models, we use simulations to construct graphs that illustrate and describe the dynamics of the models. One of the main contributions of this dissertation is the study of the stability of some concrete nonlinear maps using the center manifold theory. Moreover, the second contribution is the study of bifurcation, and in particular the construction of bifurcation diagrams in the parameter space of the autonomous Ricker competition model. Since the dynamics of the Ricker competition model is similar to the logistic competition model, we believe that there exists a certain class of two-dimensional maps with which we can generalize our results. Finally, using the Brouwer’s fixed point theorem and the construction of a compact invariant and convex subset of the space, we present a proof of the existence of a positive periodic solution of the nonautonomous Ricker competition model.
Resumo:
José Francisco da Silva Costa Rodrigues e José Manuel Nunes Castanheira da Costa
Resumo:
José Carmo
Resumo:
Jorge Nuno Silva
Resumo:
Este trabalho compara as soluções disponibilizadas pelos sistemas Derive 5.0, Maple 6 e Mathematica 4.0 para problemas que encontramos no ensino secundário e também nos primeiros anos da universidade. Procuramos destacar os aspectos distintos entre cada um dos programas ao mesmo tempo que fazemos referência aos pontos em que tudo se passa de forma semelhante. Esta dissertação aborda o cálculo numérico, o cálculo simbólico, a programação e os gráficos. Para cada um dos assuntos é estudada a forma como se podem resolver os problemas através dos três sistemas comparando-se estas soluções. Inicialmente, é feita uma abordagem que permite ao utilizador adquirir os conhecimentos básicos acerca dos diversos programas. Tratamos de seguida de algumas questões relacionadas com o cálculo numérico e com algumas funções nomeadamente da Teoria dos Números. Referimos listas e funções e são analisadas diversas formas de manipular listas e os seus elementos bem como algumas áreas da Análise Matemática das quais destacamos as equações, a derivação e a integração compreendendo cálculo numérico e cálculo simbólico. Examinamos um vasto conjunto de operações definidas sobre matrizes (representadas como listas de listas) e polinómios que abrangem as operações mais comuns de cada um dos campos. Analisamos também a programação recursiva, a programação imperativa, a programação funcional e a programação por regras de reescrita. A abordagem aqui adoptada foi a de fornecer ao utilizador as construções chave mais importantes que cada paradigma de programação utiliza bem como as informações básicas acerca do funcionamento de cada uma delas de modo a permitir a resolução dos problemas propostos. Por último os gráficos sobre os quais incidiu a nossa análise foram os de uma e de duas variáveis representados no referencial cartesiano, gráficos estes que são os mais utilizados quer ao nível do ensino superior quer ao nível do ensino secundário. A qualidade e a facilidade de obter rapidamente as representações dão outra dimensão ao estudo dos gráficos principalmente quando estamos a falar de gráficos a três dimensões. A ideia de animação gráfica é também aqui abordada sendo evidente os benefícios da utilização da mesma nos programas em que é possível efectuá-la. Concluímos que na programação o Mathematica destaca-se em relação aos demais o mesmo se passando no Maple no respeitante à representação gráfica. O Derive permite que durante o contacto inicial seja mais fácil trabalhar e aprender a linguagem própria.
Resumo:
Dinis Pestana