21 resultados para Gas chromatography–mass spectrometry


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE–LD/LVI-GC–qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9–17.8%), and low detection limits were achieved for nine volatile compounds (0.05–9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE–LD/LVI-GC–qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The establishment of potential age markers of Madeira wine is of paramount significance as it may contribute to detect frauds and to ensure the authenticity of wine. Considering the chemical groups of furans, lactones, volatile phenols, and acetals, 103 volatile compounds were tentatively identified; among these, 71 have been reported for the first time in Madeira wines. The chemical groups that could be used as potential age markers were predominantly acetals, namely, diethoxymethane, 1,1-diethoxyethane, 1,1-diethoxy-2-methyl-propane, 1-(1-ethoxyethoxy)-pentane, trans-dioxane and 2-propyl-1,3-dioxolane, and from the other chemical groups, 5-methylfurfural and cis-oak-lactone, independently of the variety and the type of wine. GC × GC-ToFMS system offers a more useful approach to identify these compounds compared to previous studies using GC−qMS, due to the orthogonal systems, that reduce coelution, increase peak capacity and mass selectivity, contributing to the establishment of new potential Madeira wine age markers. Remarkable results were also obtained in terms of compound identification based on the organized structure of the peaks of structurally related compounds in the GC × GC peak apex plots. This information represents a valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition of samples. This new approach provides data that can be extended to determine age markers of other types of wines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hop(HumuluslupulusL.,Cannabaceaefamily)isprizedforitsessentialoilcontents,usedin beer production and, more recently, in biological and pharmacological applications. In this work,a methodinvolvingheadspace solid-phase microextractionand gas chromatography– mass spectrometry was developed and optimized to establish the terpenoid (monoterpenes and sesquiterpenes) metabolomic pattern of hop-essential oil derived from Saaz variety as a mean to explore this matrix as a powerful biological source for newer, more selective, biodegradable and naturally produced antimicrobial and antioxidant compounds. Different parameters affecting terpenoid metabolites extraction by headspace solid-phase microextraction were considered and optimized: type of fiber coatings, extraction temperature, extraction time, ionic strength, and sample agitation. In the optimized method, analytes were extracted for 30 min at 40 C in the sample headspace with a 50/30 m divinylbenzene/carboxen/polydimethylsiloxane coating fiber. The methodology allowed the identification of a total of 27 terpenoid metabolites, representing 92.5% of the total Saaz hop-essential oil volatile terpenoid composition. The headspace composition was dominated by monoterpenes (56.1%, 13 compounds), sesquiterpenes (34.9%, 10), oxygenated monoterpenes (1.41%, 3), and hemiterpenes (0.04%, 1) some of which can probably contribute to the hop of Saaz variety aroma. Mass spectrometry analysis revealed that the main metabolites are the monoterpene -myrcene (53.0±1.1% of the total volatile fraction), and the cyclic sesquiterpenes, -humulene (16.6 ± 0.8%), and -caryophyllene (14.7 ± 0.4%), which together represent about 80% of the total volatile fraction from the hop-essential oil. Thesefindingssuggestthatthismatrixcanbeexploredasapowerfulbiosourceofterpenoid metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima. The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allergic asthma represents an important public health issue, most common in the paediatric population, characterized by airway inflammation that may lead to changes in volatiles secreted via the lungs. Thus, exhaled breath has potential to be a matrix with relevant metabolomic information to characterize this disease. Progress in biochemistry, health sciences and related areas depends on instrumental advances, and a high throughput and sensitive equipment such as comprehensive two-dimensional gas chromatography–time of flight mass spectrometry (GC × GC–ToFMS) was considered. GC × GC–ToFMS application in the analysis of the exhaled breath of 32 children with allergic asthma, from which 10 had also allergic rhinitis, and 27 control children allowed the identification of several hundreds of compounds belonging to different chemical families. Multivariate analysis, using Partial Least Squares-Discriminant Analysis in tandem with Monte Carlo Cross Validation was performed to assess the predictive power and to help the interpretation of recovered compounds possibly linked to oxidative stress, inflammation processes or other cellular processes that may characterize asthma. The results suggest that the model is robust, considering the high classification rate, sensitivity, and specificity. A pattern of six compounds belonging to the alkanes characterized the asthmatic population: nonane, 2,2,4,6,6-pentamethylheptane, decane, 3,6-dimethyldecane, dodecane, and tetradecane. To explore future clinical applications, and considering the future role of molecular-based methodologies, a compound set was established to rapid access of information from exhaled breath, reducing the time of data processing, and thus, becoming more expedite method for the clinical purposes.