4 resultados para Números Inteiros
em Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar
Resumo:
Apresenta a revisão de tópicos de matemática elementar do ensino fundamental com visão do ensino superior. Na subunidade 1 são abordados os conceitos de conjuntos numéricos e algumas das propriedades inerentes à suas estruturas: números naturais, números inteiros, números racionais, números irracionais, números reais, intervalos reais e números complexos. A subunidade 2 engloba a definição dos conceitos de grandezas proporcionais: números direta e inversamente proporcionais, grandezas direta e inversamente proporcionais, regra de três simples, regra de três composta com resolução de problemas ilustrativos. Os exemplos resolvidos englobam a aplicação da regra de três simples e composta para grandezas direta e inversamente proporcionais.
Resumo:
A videoaula traz o teorema da divisão no contexto dos números inteiros e o Máximo Divisor Comum (MDC). Destaca ainda o algoritmo de Euclides, sendo este usado para cálculo do máximo divisor comum.
Resumo:
A videoaula traz o conceito de aritmética modular, como sendo o estudo das operações básicas sobre um contexto diferente, que é o sistema dos números inteiros módulo n. As operações básicas são: adição mod n, subtração mod n, multiplicação mod n, e divisão mod n. O material destaca ainda a adição e multiplicação modulares, a subtração e a divisão modular, o inverso modular e seus elementos e, por fim, o cálculo de equações.
Resumo:
A criação dos números fracionários se deu em um determinado momento que os números naturais não eram mais suficientes para moderar as situações do dia a dia. Assim, os números naturais expressam a idéia de quantidade e os números fracionários a de quantidade e medida. É nesse sentido que o número fracionário é representado por a/b, onde a é a quantidade e b a medida. As frações expressam dois tipos de grandezas (coisas que podemos contar ou medir, como por exemplo, massa, temperatura, tempo): contínuas e discretas. Na sala de aula, as frações deveriam ser trabalhadas, em um primeiro momento, a partir da observação, manipulação e comparação. E só posteriormente o professor poderia trabalhar os aspectos formais do assunto. As frações expressam diversas idéias matemáticas na tentativa de representar situações do cotidiano, algumas dessas ideias são: partição (parcela), quociente (resultado de uma divisão), medida, probabilidade e número (a/b). Cumpre, ainda, acrescentar que as frações equivalentes são aquelas que representam ou significam um mesmo resultado.