4 resultados para vanishing discount approach

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the Pricing Equation, in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) mimicking portfolio which relies on the fact that its logarithm is the ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences, making it suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the "common feature" in every asset return of the economy. Our estimator is a simple function of asset returns and does not depend on any parametric function representing preferences. The techniques discussed in this paper were applied to two relevant issues in macroeconomics and finance: the first asks what type of parametric preference-representation could be validated by asset-return data, and the second asks whether or not our SDF estimator can price returns in an out-of-sample forecasting exercise. In formal testing, we cannot reject standard preference specifications used in the macro/finance literature. Estimates of the relative risk-aversion coefficient are between 1 and 2, and statistically equal to unity. We also show that our SDF proxy can price reasonably well the returns of stocks with a higher capitalization level, whereas it shows some difficulty in pricing stocks with a lower level of capitalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aim to provide a review of the stochastic discount factor bounds usually applied to diagnose asset pricing models. In particular, we mainly discuss the bounds used to analyze the disaster model of Barro (2006). Our attention is focused in this disaster model since the stochastic discount factor bounds that are applied to study the performance of disaster models usually consider the approach of Barro (2006). We first present the entropy bounds that provide a diagnosis of the analyzed disaster model which are the methods of Almeida and Garcia (2012, 2016); Ghosh et al. (2016). Then, we discuss how their results according to the disaster model are related to each other and also present the findings of other methodologies that are similar to these bounds but provide different evidence about the performance of the framework developed by Barro (2006).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main purpose of this paper is to propose a methodology to obtain a hedge fund tail risk measure. Our measure builds on the methodologies proposed by Almeida and Garcia (2015) and Almeida, Ardison, Garcia, and Vicente (2016), which rely in solving dual minimization problems of Cressie Read discrepancy functions in spaces of probability measures. Due to the recently documented robustness of the Hellinger estimator (Kitamura et al., 2013), we adopt within the Cressie Read family, this specific discrepancy as loss function. From this choice, we derive a minimum Hellinger risk-neutral measure that correctly prices an observed panel of hedge fund returns. The estimated risk-neutral measure is used to construct our tail risk measure by pricing synthetic out-of-the-money put options on hedge fund returns of ten specific categories. We provide a detailed description of our methodology, extract the aggregate Tail risk hedge fund factor for Brazilian funds, and as a by product, a set of individual Tail risk factors for each specific hedge fund category.