6 resultados para univariate and multivariate yield indices
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
The aim of this paper is to provide evidence on output convergence among the Mercosur countries and associates, using multivariate time-series tests. The methodology is based on a combination of tests and estimation procedures, both univariate and multivariate, applied to the differences in per capita real income. We use the definitions of time-series convergence proposed by Bernard & Durlauf and apply unit root and tests proposed by Abuaf & Jorion and Taylor & Sarno. In this same multivariate context, the Flôres, Preumont & Szafarz and Breuer, MbNown & Wallace tests, which allow for the existence of correlations across the series without imposing a common speed of mean reversion, identify the countries that convergence. Concerning the empirical results, there is evidence of long-run convergence or, at least, catching up, for the smaller countries, Bolivia, Paraguay, Peru and Uruguay, towards Brazil and, to some extent, Argentina. In contrast, the evidence on convergence for the larger countries is weaker, as they have followed different (or rather opposing) macroeconomic policy strategies. Thus the future of the whole area will critically depend on the ability of Brazil, Argentina and Chile to find some scope for more cooperative policy actions.
Resumo:
This paper presents a theoretical and empirical analysis of the substitutability of international private capital flows. Both univariate and multivariate investigations of the capital movements related to the Brazilian economy during the period 1991-1998 are conducted. Contrary to other studies, we find an equilibrium relationship linking the flows. We also find support for the complementarity hypothesis in the long term and for the substitutability hypothesis in the short term.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.
Resumo:
This thesis is composed of three articles with the subjects of macroeconomics and - nance. Each article corresponds to a chapter and is done in paper format. In the rst article, which was done with Axel Simonsen, we model and estimate a small open economy for the Canadian economy in a two country General Equilibrium (DSGE) framework. We show that it is important to account for the correlation between Domestic and Foreign shocks and for the Incomplete Pass-Through. In the second chapter-paper, which was done with Hedibert Freitas Lopes, we estimate a Regime-switching Macro-Finance model for the term-structure of interest rates to study the US post-World War II (WWII) joint behavior of macro-variables and the yield-curve. We show that our model tracks well the US NBER cycles, the addition of changes of regime are important to explain the Expectation Theory of the term structure, and macro-variables have increasing importance in recessions to explain the variability of the yield curve. We also present a novel sequential Monte-Carlo algorithm to learn about the parameters and the latent states of the Economy. In the third chapter, I present a Gaussian A ne Term Structure Model (ATSM) with latent jumps in order to address two questions: (1) what are the implications of incorporating jumps in an ATSM for Asian option pricing, in the particular case of the Brazilian DI Index (IDI) option, and (2) how jumps and options a ect the bond risk-premia dynamics. I show that jump risk-premia is negative in a scenario of decreasing interest rates (my sample period) and is important to explain the level of yields, and that gaussian models without jumps and with constant intensity jumps are good to price Asian options.
Resumo:
Nos dias de hoje existe uma grande demanda e pressão na seleção e definição de prioridades das alternativas de investimento para alavancar o crescimento de longo prazo das empresas. Em paralelo a este cenário, o ambiente global está cada vez mais incerto, o que implica que as escolhas realizadas por estas empresas devem se adaptar aos novos desejos do mercado e, principalmente, devem manter o direcionamento de crescimento almejado pelas mesmas. Neste contexto conturbado, as ferramentas tradicionais utilizadas para a tomada de decisão, para selecionar e definir as prioridades são as análises econômico-financeira representadas pelo Valor Presente Líquido, a Taxa Interna de Retorno e o Payback. Apesar de estes itens serem métodos robustos e consistentes na avaliação de projetos de investimentos, eles focam apenas em um aspecto (o financeiro), e as empresas, atualmente, estão envolvidas em ambientes que precisam de uma abordagem mais ampla, contemplando outras visões e dimensões não presentes nos estudos financeiros. Ou seja, quando se faz uma análise de carteira de projetos alinhada ao planejamento estratégico, é necessário realizar uma abordagem multicritério envolvendo indicadores quantitativos e qualitativos e disponibilizando aos tomadores de decisão uma informação completa e padronizada de todos os projetos, uma vez que estas iniciativas não possuem características homogêneas, pois cada uma apresenta sua respectiva particularidade e, principalmente, está em diferentes estágios de maturidade. Aliado a estes pontos, é perceptível que o processo de seleção e priorização de projetos necessita de uma sistematização que garanta a esta decisão e a este Portfólio uma maior estabilidade e fidedignidade das informações. Neste trabalho, portanto, foi elaborada uma análise multivariada, mais especificamente, a utilização de sistemas de apoio à tomada de decisão. Foram escolhidos outros critérios além do econômico-financeiro, para suportar a seleção e priorização de projetos no atendimento dos objetivos estratégicos da organização e de seus stakeholders.
Resumo:
The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.