25 resultados para state-space model
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This paper shows existence of approximate recursive equilibrium with minimal state space in an environment of incomplete markets. We prove that the approximate recursive equilibrium implements an approximate sequential equilibrium which is always close to a Magill and Quinzii equilibrium without short sales for arbitrarily small errors. This implies that the competitive equilibrium can be implemented by using forecast statistics with minimal state space provided that agents will reduce errors in their estimates in the long run. We have also developed an alternative algorithm to compute the approximate recursive equilibrium with incomplete markets and heterogeneous agents through a procedure of iterating functional equations and without using the rst order conditions of optimality.
Resumo:
This paper has several original contributions. The first is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series- all coincident with GDP from a business-cycle dating point of view. Based on these results, we finally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil - the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
This paper has several original contributions. The rst is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we nally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil - the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
This paper has several original contributions. The rst is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). Second, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), we propose and test a myriad of interpolation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we nally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil- the Brazilian Economic Activity Index - (IBC-Br). We found that the our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, whichmay not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. Third, in a nowcasting and forecasting exercise, we illustrate the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
The first contribution of this paper is to employ a superior interpolation method that enables to estimate, nowcast and forecast monthly Brazilian GDP for 1980-2012 in an integrated way; see Bernanke, Gertler and Watson (1997, Brookings Papers on Economic Activity). The second contribution, along the spirit of Mariano and Murasawa (2003, Journal of Applied Econometrics), is to propose and test a myriad of inter-polation models and interpolation auxiliary series all coincident with GDP from a business-cycle dating point of view. Based on these results, we finally choose the most appropriate monthly indicator for Brazilian GDP. Third, this monthly GDP estimate is compared to an economic activity indicator widely used by practitioners in Brazil - the Brazilian Economic Activity Index - (IBC-Br). We found that our monthly GDP tracks economic activity better than IBC-Br. This happens by construction, since our state-space approach imposes the restriction (discipline) that our monthly estimate must add up to the quarterly observed series in any given quarter, which may not hold regarding IBC-Br. Moreover, our method has the advantage to be easily implemented: it only requires conditioning on two observed series for estimation, while estimating IBC-Br requires the availability of hundreds of monthly series. The third contribution is to illustrate, in a nowcasting and forecasting exercise, the advantages of our integrated approach. Finally, we compare the chronology of recessions of our monthly estimate with those done elsewhere.
Resumo:
The article suggests a new test for strong hysteresis in international trade. The variables that capture the effects of hysteresis are based on the model of Dixit (1989) with calibrations using a state-space model to determine the parameters for each point in time. These variables are then applied to a cointegration test with breaks, where it is possible to verify whether the hysteresis effect is essential in determining the long-term equilibrium.
Resumo:
The goal of this paper is to evaluate the validity of the Taylor principle for inflation control in 12 developing countries that use inflation targeting regimes: Brazil, Chile, Colombia, Hungary, Israel, Mexico, Peru, Philippines, Poland, South Africa, Thailand and Turkey. The test is based on a state-space model to determine when each country has followed the principle; then a threshold unit root test is used to verify if the stationarity of the deviation of the expected inflation from its target depends on compliance with the Taylor principle. The results show that such compliance leads to the stationarity of the deviation of the expected inflation from its target in all cases. Furthermore, in most cases, non-compliance with the Taylor principle leads to nonstationary deviation of the expected inflation.
Resumo:
This thesis has three chapters. Chapter 1 explores literature about exchange rate pass-through, approaching both empirical and theoretical issues. In Chapter 2, we formulate an estate space model for the estimation of the exchange rate pass-through of the Brazilian Real against the US Dollar, using monthly data from August 1999 to August 2008. The state space approach allows us to verify some empirical aspects presented by economic literature, such as coe cients inconstancy. The estimates o ffer evidence that the pass-through had variation over the observed sample. The state space approach is also used to test whether some of the "determinants" of pass-through are related to the exchange rate pass-through variations observed. According to our estimates, the variance of the exchange rate pass-through, monetary policy and trade ow have infuence on the exchange rate pass-through. The third and last chapter proposes the construction of a coincident and leading indicator of economic activity in the United States of America. These indicators are built using a probit state space model to incorporate the deliberations of the NBER Dating Cycles Committee regarding the state of the economy in the construction of the indexes. The estimates o ffer evidence that the NBER Committee weighs the coincident series (employees in nonagricultural payrolls, industrial production, personal income less transferences and sales) di fferently way over time and between recessions. We also had evidence that the number of employees in nonagricultural payrolls is the most important coincident series used by the NBER to de fine the periods of recession in the United States.
Resumo:
O objetivo deste trabalho é caracterizar a Curva de Juros Mensal para o Brasil através de três fatores, comparando dois tipos de métodos de estimação: Através da Representação em Espaço de Estado é possível estimá-lo por dois Métodos: Filtro de Kalman e Mínimos Quadrados em Dois Passos. Os fatores têm sua dinâmica representada por um Modelo Autorregressivo Vetorial, VAR(1), e para o segundo método de estimação, atribui-se uma estrutura para a Variância Condicional. Para a comparação dos métodos empregados, propõe-se uma forma alternativa de compará-los: através de Processos de Markov que possam modelar conjuntamente o Fator de Inclinação da Curva de Juros, obtido pelos métodos empregados neste trabalho, e uma váriavel proxy para Desempenho Econômico, fornecendo alguma medida de previsão para os Ciclos Econômicos.
Resumo:
Nesse trabalho, procuramos identificar fatores sistemáticos que expliquem uma variação significativa nos fluxos destinados às diversas categorias de fundos de investimento brasileiros, a partir de análises de uma amostra de dados agregados de captações e resgates nesses produtos. O estudo buscou avaliar a existência de padrões de comportamento comuns aos investidores de fundos locais através da análise da migração de fluxos entre as diversas classes de fundos. Foram inicialmente tratados os fatores não comportamentais conhecidos que impactam o fluxo dos fundos, a variável dependente. Esses fatores conhecidos foram apurados através de uma revisão dos trabalhos acadêmicos dos mercados internacional e local. Após esse tratamento foi aplicado o método de decomposição de valores singulares (SVD - Singular Value Decomposition), com o objetivo de avaliarmos os efeitos comportamentais agrupados dos investidores. A decomposição em valores singulares sugere como principais fatores comuns comportamentos de entrada e saída de fundos em massa e migrações entre as classes de fundos de menor e as de maior risco, o que Baker e Wurgler (2007) chamaram de demanda especulativa, e que, segundo esses e outros autores pesquisados, poderia ser interpretada como uma proxy do sentimento dos investidores. Guercio e Tkac (2002) e Edelen et al. (2010), encontraram em suas pesquisas evidências da diferença de comportamento entre investidores de atacado e de varejo, o que foi detectado para a classes de fundos de Renda Variável no caso do presente estudo sobre o mercado brasileiro. O entendimento das variações na tolerância a risco dos investidores de fundos de investimento pode auxiliar na oferta de produtos mais compatíveis com a demanda. Isso permitiria projetar captações para os produtos com base nas características dessa oferta, o que também desenvolvemos nessa pesquisa para o caso das categorias de fundos Multimercado e Renda variável, através de um modelo de espaço de estados com sazonalidade determinística e inicialização SVD. O modelo proposto nesse trabalho parece ter conseguido capturar, na amostra avaliada (2005-2008), um comportamento que se manteve fora da amostra (2009-2011), validando, ao menos na amostra considerada, a proposta de extração dos componentes principais agregados do comportamento dos investidores de fundos brasileiros.
Resumo:
Esta pesquisa busca testar a eficácia de uma estratégia de arbitragem de taxas de juros no Brasil baseada na utilização do modelo de Nelson-Siegel dinâmico aplicada à curva de contratos futuros de taxa de juros de 1 dia da BM&FBovespa para o período compreendido entre 02 de janeiro de 2008 e 03 de dezembro de 2012. O trabalho adapta para o mercado brasileiro o modelo original proposto por Nelson e Siegel (1987), e algumas de suas extensões e interpretações, chegando a um dos modelos propostos por Diebold, Rudebusch e Aruoba (2006), no qual estimam os parâmetros do modelo de Nelson-Siegel em uma única etapa, colocando-o em formato de espaço de estados e utilizando o Filtro de Kalman para realizar a previsão dos fatores, assumindo que o comportamento dos mesmos é um VAR de ordem 1. Desta maneira, o modelo possui a vantagem de que todos os parâmetros são estimados simultaneamente, e os autores mostraram que este modelo possui bom poder preditivo. Os resultados da estratégia adotada foram animadores quando considerados para negociação apenas os 7 primeiros vencimentos abertos para negociação na BM&FBovespa, que possuem maturidade máxima próxima a 1 ano.
Resumo:
This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data
Resumo:
Este trabalho compara modelos de séries temporais para a projeção de curto prazo da inflação brasileira, medida pelo Índice de Preços ao Consumidor Amplo (IPCA). Foram considerados modelos SARIMA de Box e Jenkins e modelos estruturais em espaço de estados, estimados pelo filtro de Kalman. Para a estimação dos modelos, foi utilizada a série do IPCA na base mensal, de março de 2003 a março de 2012. Os modelos SARIMA foram estimados no EVIEWS e os modelos estruturais no STAMP. Para a validação dos modelos para fora da amostra, foram consideradas as previsões 1 passo à frente para o período de abril de 2012 a março de 2013, tomando como base os principais critérios de avaliação de capacidade preditiva propostos na literatura. A conclusão do trabalho é que, embora o modelo estrutural permita, decompor a série em componentes com interpretação direta e estudá-las separadamente, além de incorporar variáveis explicativas de forma simples, o desempenho do modelo SARIMA para prever a inflação brasileira foi superior, no período e horizonte considerados. Outro importante aspecto positivo é que a implementação de um modelo SARIMA é imediata, e previsões a partir dele são obtidas de forma simples e direta.
Resumo:
O trabalho tem como objetivo verificar a existência e a relevância dos Efeitos Calendário em indicadores industriais. São explorados modelos univariados lineares para o indicador mensal da produção industrial brasileira e alguns de seus componentes. Inicialmente é realizada uma análise dentro da amostra valendo-se de modelos estruturais de espaço-estado e do algoritmo de seleção Autometrics, a qual aponta efeito significante da maioria das variáveis relacionadas ao calendário. Em seguida, através do procedimento de Diebold-Mariano (1995) e do Model Confidence Set, proposto por Hansen, Lunde e Nason (2011), são realizadas comparações de previsões de modelos derivados do Autometrics com um dispositivo simples de Dupla Diferença para um horizonte de até 24 meses à frente. Em geral, os modelos Autometrics que consideram as variáveis de calendário se mostram superiores nas projeções de 1 a 2 meses adiante e superam o modelo simples em todos os horizontes. Quando se agrega os componentes de categoria de uso para formar o índice industrial total, há evidências de ganhos nas projeções de prazo mais curto.
Resumo:
We use the information content in the decisions of the NBER Business Cycle Dating Committee to construct coincident and leading indices of economic activity for the United States. We identify the coincident index by assuming that the coincident variables have a common cycle with the unobserved state of the economy, and that the NBER business cycle dates signify the turning points in the unobserved state. This model allows us to estimate our coincident index as a linear combination of the coincident series. We establish that our index performs better than other currently popular coincident indices of economic activity.