3 resultados para root-mean-square roughness

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parametric term structure models have been successfully applied to innumerous problems in fixed income markets, including pricing, hedging, managing risk, as well as studying monetary policy implications. On their turn, dynamic term structure models, equipped with stronger economic structure, have been mainly adopted to price derivatives and explain empirical stylized facts. In this paper, we combine flavors of those two classes of models to test if no-arbitrage affects forecasting. We construct cross section (allowing arbitrages) and arbitrage-free versions of a parametric polynomial model to analyze how well they predict out-of-sample interest rates. Based on U.S. Treasury yield data, we find that no-arbitrage restrictions significantly improve forecasts. Arbitrage-free versions achieve overall smaller biases and Root Mean Square Errors for most maturities and forecasting horizons. Furthermore, a decomposition of forecasts into forward-rates and holding return premia indicates that the superior performance of no-arbitrage versions is due to a better identification of bond risk premium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convex combinations of long memory estimates using the same data observed at different sampling rates can decrease the standard deviation of the estimates, at the cost of inducing a slight bias. The convex combination of such estimates requires a preliminary correction for the bias observed at lower sampling rates, reported by Souza and Smith (2002). Through Monte Carlo simulations, we investigate the bias and the standard deviation of the combined estimates, as well as the root mean squared error (RMSE), which takes both into account. While comparing the results of standard methods and their combined versions, the latter achieve lower RMSE, for the two semi-parametric estimators under study (by about 30% on average for ARFIMA(0,d,0) series).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho tem por objetivo avaliar para o caso brasileiro uma das mais importantes propriedades esperadas de um núcleo: ser um bom previsor da inflação plena futura. Para tanto, foram utilizados como referência para comparação dois modelos construídos a partir das informações mensais do IPCA e seis modelos VAR referentes a cada uma das medidas de núcleo calculadas pelo Banco Central do Brasil. O desempenho das previsões foi avaliado pela comparação dos resultados do erro quadrático médio e pela aplicação da metodologia de Diebold-Mariano (1995) de comparação de modelos. Os resultados encontrados indicam que o atual conjunto de medidas de núcleos calculado pelo Banco Central não atende pelos critérios utilizados neste trabalho a essa característica desejada.