2 resultados para planets and satellites: fundamental parameters
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Using vector autoregressive (VAR) models and Monte-Carlo simulation methods we investigate the potential gains for forecasting accuracy and estimation uncertainty of two commonly used restrictions arising from economic relationships. The Örst reduces parameter space by imposing long-term restrictions on the behavior of economic variables as discussed by the literature on cointegration, and the second reduces parameter space by imposing short-term restrictions as discussed by the literature on serial-correlation common features (SCCF). Our simulations cover three important issues on model building, estimation, and forecasting. First, we examine the performance of standard and modiÖed information criteria in choosing lag length for cointegrated VARs with SCCF restrictions. Second, we provide a comparison of forecasting accuracy of Ötted VARs when only cointegration restrictions are imposed and when cointegration and SCCF restrictions are jointly imposed. Third, we propose a new estimation algorithm where short- and long-term restrictions interact to estimate the cointegrating and the cofeature spaces respectively. We have three basic results. First, ignoring SCCF restrictions has a high cost in terms of model selection, because standard information criteria chooses too frequently inconsistent models, with too small a lag length. Criteria selecting lag and rank simultaneously have a superior performance in this case. Second, this translates into a superior forecasting performance of the restricted VECM over the VECM, with important improvements in forecasting accuracy ñreaching more than 100% in extreme cases. Third, the new algorithm proposed here fares very well in terms of parameter estimation, even when we consider the estimation of long-term parameters, opening up the discussion of joint estimation of short- and long-term parameters in VAR models.
Resumo:
This paper uses dynamic programming to study the time consistency of optimal macroeconomic policy in economies with recurring public deficits. To this end, a general equilibrium recursive model introduced in Chang (1998) is extended to include govemment bonds and production. The original mode! presents a Sidrauski economy with money and transfers only, implying that the need for govemment fmancing through the inflation tax is minimal. The extended model introduces govemment expenditures and a deficit-financing scheme, analyzing the SargentWallace (1981) problem: recurring deficits may lead the govemment to default on part of its public debt through inflation. The methodology allows for the computation of the set of alI sustainable stabilization plans even when the govemment cannot pre-commit to an optimal inflation path. This is done through value function iterations, which can be done on a computeI. The parameters of the extended model are calibrated with Brazilian data, using as case study three Brazilian stabilization attempts: the Cruzado (1986), Collor (1990) and the Real (1994) plans. The calibration of the parameters of the extended model is straightforward, but its numerical solution proves unfeasible due to a dimensionality problem in the algorithm arising from limitations of available computer technology. However, a numerical solution using the original algorithm and some calibrated parameters is obtained. Results indicate that in the absence of govemment bonds or production only the Real Plan is sustainable in the long run. The numerical solution of the extended algorithm is left for future research.