2 resultados para parametric identification
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Parametric term structure models have been successfully applied to innumerous problems in fixed income markets, including pricing, hedging, managing risk, as well as studying monetary policy implications. On their turn, dynamic term structure models, equipped with stronger economic structure, have been mainly adopted to price derivatives and explain empirical stylized facts. In this paper, we combine flavors of those two classes of models to test if no-arbitrage affects forecasting. We construct cross section (allowing arbitrages) and arbitrage-free versions of a parametric polynomial model to analyze how well they predict out-of-sample interest rates. Based on U.S. Treasury yield data, we find that no-arbitrage restrictions significantly improve forecasts. Arbitrage-free versions achieve overall smaller biases and Root Mean Square Errors for most maturities and forecasting horizons. Furthermore, a decomposition of forecasts into forward-rates and holding return premia indicates that the superior performance of no-arbitrage versions is due to a better identification of bond risk premium.
Resumo:
This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.