4 resultados para homogeneous Markov chain
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Este trabalho analisa, sob uma perspectiva quantitativa, a retenção de clientes durante o processo de renegociação de créditos inadimplentes. O foco principal é entender quais são as variáveis que explicam a retenção destes clientes e, portanto, aprimorar o processo de cobrança de uma instituição financeira no Brasil. O tema se torna relevante à medida em que vários fatores tornam a competitividade mais difícil no ambiente de crédito no país: a concentração bancária vivida na última década, o aumento da oferta de crédito nos últimos anos, a redução dos spreads bancários, e por fim a crise econômica global que afeta em especial o setor financeiro. A pesquisa procura investigar quais variáveis melhor explicam o fenômeno da retenção. Para tanto, foram segregados clientes projetados como rentáveis pela cadeia de Markov. Em seguida, testou-se a aderência de variáveis cadastrais e contratuais à variável-resposta retenção, por duas metodologias: o algoritmo CHAID da árvore de decisão e o método stepwise da regressão logística. Os resultados indicam que o método CHAID selecionou 7 e o stepwise 8 variáveis, sendo algumas de natureza cadastral e outras que vêm do próprio contrato de renegociação. Dado que as condições do contrato influenciam a retenção e portanto o valor do cliente, sugere-se que o processo de oferta incorpore operacionalmente a noção de retenção na atividade da cobrança.
Resumo:
A determinação da taxa de juros estrutura a termo é um dos temas principais da gestão de ativos financeiros. Considerando a grande importância dos ativos financeiros para a condução das políticas econômicas, é fundamental para compreender a estrutura que é determinado. O principal objetivo deste estudo é estimar a estrutura a termo das taxas de juros brasileiras, juntamente com taxa de juros de curto prazo. A estrutura a termo será modelado com base em um modelo com uma estrutura afim. A estimativa foi feita considerando a inclusão de três fatores latentes e duas variáveis macroeconômicas, através da técnica Bayesiana da Cadeia de Monte Carlo Markov (MCMC).
Resumo:
The aim of this paper is to analyze extremal events using Generalized Pareto Distributions (GPD), considering explicitly the uncertainty about the threshold. Current practice empirically determines this quantity and proceeds by estimating the GPD parameters based on data beyond it, discarding all the information available be10w the threshold. We introduce a mixture model that combines a parametric form for the center and a GPD for the tail of the distributions and uses all observations for inference about the unknown parameters from both distributions, the threshold inc1uded. Prior distribution for the parameters are indirectly obtained through experts quantiles elicitation. Posterior inference is available through Markov Chain Monte Carlo (MCMC) methods. Simulations are carried out in order to analyze the performance of our proposed mode1 under a wide range of scenarios. Those scenarios approximate realistic situations found in the literature. We also apply the proposed model to a real dataset, Nasdaq 100, an index of the financiai market that presents many extreme events. Important issues such as predictive analysis and model selection are considered along with possible modeling extensions.
Resumo:
This dissertation presents two papers on how to deal with simple systemic risk measures to assess portfolio risk characteristics. The first paper deals with the Granger-causation of systemic risk indicators based in correlation matrices in stock returns. Special focus is devoted to the Eigenvalue Entropy as some previous literature indicated strong re- sults, but not considering different macroeconomic scenarios; the Index Cohesion Force and the Absorption Ratio are also considered. Considering the S&P500, there is not ev- idence of Granger-causation from Eigenvalue Entropies and the Index Cohesion Force. The Absorption Ratio Granger-caused both the S&P500 and the VIX index, being the only simple measure that passed this test. The second paper develops this measure to capture the regimes underlying the American stock market. New indicators are built using filtering and random matrix theory. The returns of the S&P500 is modelled as a mixture of normal distributions. The activation of each normal distribution is governed by a Markov chain with the transition probabilities being a function of the indicators. The model shows that using a Herfindahl-Hirschman Index of the normalized eigenval- ues exhibits best fit to the returns from 1998-2013.