16 resultados para forecast errors

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo do trabalho investigar qualidade das previsões da taxa de inflação brasileira utilizando-se uma alternativa tradicional unemployment rate Phillips curve. Utilizaremos diversas variáveis que espelham nível de atividade econômica no Brasil em substituição ao hiato entre taxa de desemprego taxa natural de desemprego (NAIRU). Essas variáveis serão trabalhadas e baseado em critérios mencionados ao longo do estudo, serão classificadas por nível de erro de previsibilidade. objetivo ao final do trabalho sugerir indicadores variáveis de nível de atividade disponíveis publicamente que melhor possam interagir com dinâmica da inflação brasileira.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies the electricity load demand behavior during the 2001 rationing period, which was implemented because of the Brazilian energetic crisis. The hourly data refers to a utility situated in the southeast of the country. We use the model proposed by Soares and Souza (2003), making use of generalized long memory to model the seasonal behavior of the load. The rationing period is shown to have imposed a structural break in the series, decreasing the load at about 20%. Even so, the forecast accuracy is decreased only marginally, and the forecasts rapidly readapt to the new situation. The forecast errors from this model also permit verifying the public response to pieces of information released regarding the crisis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O trabalho busca comparar dois conjuntos de informações para a projeção das variações do PIB brasileiro: através de modelos econométricos aplicados sobre a série univariada do PIB, e a aplicação dos mesmos modelos, mas contemplando adicionalmente o conjunto de informação com dados da estrutura a termo de taxa de juros de swap PRÉ-DI. O objetivo é verificar, assim como descrito na literatura internacional, se informações de variáveis financeiras tem a capacidade de incrementar o poder preditivo de projeções de variáveis macroeconômicas, na medida em que esses dados também embutem as expectativas dos agentes em relação ao desenvolvimento do cenário econômico. Adicionalmente, o mesmo procedimento aplicado para os dados brasileiros é aplicado sobre as informações dos Estados Unidos, buscando poder fornecer ao estudo uma base de comparação sobre os dados, tamanho da amostra e estágio de maturidade das respectivas economias. Como conclusão do resultado do trabalho está o fato de que foi possível obter um modelo no qual a inclusão do componente de mercado apresenta menores erros de projeção do que as projeções apenas univariadas, no entanto, os ganhos de projeção não demonstram grande vantagem comparativa a ponto de poder capturar o efeito de antecipação do mercado em relação ao indicador econômico como em alguns casos norte-americanos. Adicionalmente o estudo demonstra que para este trabalho e amostra de dados, mesmo diante de diferentes modelos econométricos de previsão, as projeções univariadas apresentaram resultados similares.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho investiga e analisa as diferenças das taxas anuais de inflação realizadas com relação às previsões dos agentes econômicos do mercado para um ano à frente. Os índices analisados foram o IPCA, IPA-M, IGP-M e o IGP-DI. Referente à previsão dos agentes para cada índice, foi feito uma análise estatística e uma análise de séries temporais através do modelo ARIMA. Este último explicou o erro de previsão dos agentes econômicos através de valores passados, ou defasados, do próprio erro de previsão, além dos termos estocásticos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo deste estudo é fazer uma análise da relação entre o erro de previsão dos analistas de mercado quanto à rentabilidade das empresas listadas na BM&FBOVESPA S.A. (Bovespa) e os requerimentos de divulgação do International Financial Reporting Standards (IFRS). Isto foi feito através da regressão do erro de previsão dos analistas, utilizando a metodologia de dados em painel no ano de implantação do IFRS no Brasil, 2010, e, complementarmente em 2012, para referenciamento desses dados. Partindo desse pressuposto, foi determinado o erro de previsão das empresas listadas na Bovespa através de dados de rentabilidade (índice de lucro por ação/earnings per share) previstos e realizados, disponíveis nas bases de dados I/B/E/S Earnings Consensus Information, providos pela plataforma Thomson ONE Investment Banking e Economática Pro®, respectivamente. Os resultados obtidos indicam uma relação negativa entre o erro de previsão e o cumprimento dos requisitos de divulgação do IFRS, ou seja, quanto maior a qualidade nas informações divulgadas, menor o erro de previsão dos analistas. Portanto, esses resultados sustentam a perspectiva de que o grau de cumprimento das normas contábeis é tão ou mais importante do que as próprias normas. Adicionalmente, foi verificado que quando a empresa listada na BM&FBOVESPA é vinculada a Agência Reguladora, seu erro de previsão não é alterado. Por fim, esses resultados sugerem que é importante que haja o aprimoramento dos mecanismos de auditoria das firmas quanto ao cumprimento dos requerimentos normativos de divulgação, tais como: penalidades pela não observância da norma (enforcement), estruturas de governança corporativa e auditorias interna e externa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual horizons. The data to be used consists of metal-commodity prices in a monthly frequency from 1957 to 2012 from the International Financial Statistics of the IMF on individual metal series. We will also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009) , which are available for download. Regarding short- and long-run comovement, we will apply the techniques and the tests proposed in the common-feature literature to build parsimonious VARs, which possibly entail quasi-structural relationships between different commodity prices and/or between a given commodity price and its potential demand determinants. These parsimonious VARs will be later used as forecasting models to be combined to yield metal-commodity prices optimal forecasts. Regarding out-of-sample forecasts, we will use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates to forecast the returns and prices of metal commodities. With the forecasts of a large number of models (N large) and a large number of time periods (T large), we will apply the techniques put forth by the common-feature literature on forecast combinations. The main contribution of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding forecasting, we show that models incorporating (short-run) commoncycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation. Still, in most cases, forecast combination techniques outperform individual models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper shows existence of approximate recursive equilibrium with minimal state space in an environment of incomplete markets. We prove that the approximate recursive equilibrium implements an approximate sequential equilibrium which is always close to a Magill and Quinzii equilibrium without short sales for arbitrarily small errors. This implies that the competitive equilibrium can be implemented by using forecast statistics with minimal state space provided that agents will reduce errors in their estimates in the long run. We have also developed an alternative algorithm to compute the approximate recursive equilibrium with incomplete markets and heterogeneous agents through a procedure of iterating functional equations and without using the rst order conditions of optimality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this article is to study (understand and forecast) spot metal price levels and changes at monthly, quarterly, and annual frequencies. Data consists of metal-commodity prices at a monthly and quarterly frequencies from 1957 to 2012, extracted from the IFS, and annual data, provided from 1900-2010 by the U.S. Geological Survey (USGS). We also employ the (relatively large) list of co-variates used in Welch and Goyal (2008) and in Hong and Yogo (2009). We investigate short- and long-run comovement by applying the techniques and the tests proposed in the common-feature literature. One of the main contributions of this paper is to understand the short-run dynamics of metal prices. We show theoretically that there must be a positive correlation between metal-price variation and industrial-production variation if metal supply is held fixed in the short run when demand is optimally chosen taking into account optimal production for the industrial sector. This is simply a consequence of the derived-demand model for cost-minimizing firms. Our empirical evidence fully supports this theoretical result, with overwhelming evidence that cycles in metal prices are synchronized with those in industrial production. This evidence is stronger regarding the global economy but holds as well for the U.S. economy to a lesser degree. Regarding out-of-sample forecasts, our main contribution is to show the benefits of forecast-combination techniques, which outperform individual-model forecasts - including the random-walk model. We use a variety of models (linear and non-linear, single equation and multivariate) and a variety of co-variates and functional forms to forecast the returns and prices of metal commodities. Using a large number of models (N large) and a large number of time periods (T large), we apply the techniques put forth by the common-feature literature on forecast combinations. Empirically, we show that models incorporating (short-run) common-cycle restrictions perform better than unrestricted models, with an important role for industrial production as a predictor for metal-price variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers two-sided tests for the parameter of an endogenous variable in an instrumental variable (IV) model with heteroskedastic and autocorrelated errors. We develop the nite-sample theory of weighted-average power (WAP) tests with normal errors and a known long-run variance. We introduce two weights which are invariant to orthogonal transformations of the instruments; e.g., changing the order in which the instruments appear. While tests using the MM1 weight can be severely biased, optimal tests based on the MM2 weight are naturally two-sided when errors are homoskedastic. We propose two boundary conditions that yield two-sided tests whether errors are homoskedastic or not. The locally unbiased (LU) condition is related to the power around the null hypothesis and is a weaker requirement than unbiasedness. The strongly unbiased (SU) condition is more restrictive than LU, but the associated WAP tests are easier to implement. Several tests are SU in nite samples or asymptotically, including tests robust to weak IV (such as the Anderson-Rubin, score, conditional quasi-likelihood ratio, and I. Andrews' (2015) PI-CLC tests) and two-sided tests which are optimal when the sample size is large and instruments are strong. We refer to the WAP-SU tests based on our weights as MM1-SU and MM2-SU tests. Dropping the restrictive assumptions of normality and known variance, the theory is shown to remain valid at the cost of asymptotic approximations. The MM2-SU test is optimal under the strong IV asymptotics, and outperforms other existing tests under the weak IV asymptotics.