4 resultados para finite-time attractiveness in probability
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
We argue that it is possible to adapt the approach of imposing restrictions on available plans through finitely effective debt constraints, introduced by Levine and Zame (1996), to encompass models with default and collateral. Along this line, we introduce in the setting of Araujo, Páscoa and Torres-Martínez (2002) and Páscoa and Seghir (2008) the concept of almost finite-time solvency. We show that the conditions imposed in these two papers to rule out Ponzi schemes implicitly restrict actions to be almost finite-time solvent. We define the notion of equilibrium with almost finite-time solvency and look on sufficient conditions for its existence. Assuming a mild assumption on default penalties, namely that agents are myopic with respect to default penalties, we prove that existence is guaranteed (and Ponzi schemes are ruled out) when actions are restricted to be almost finite-time solvent. The proof is very simple and intuitive. In particular, the main existence results in Araujo et al. (2002) and Páscoa and Seghir (2008) are simple corollaries of our existence result.
Resumo:
Several works in the shopping-time and in the human-capital literature, due to the nonconcavity of the underlying Hamiltonian, use Örst-order conditions in dynamic optimization to characterize necessity, but not su¢ ciency, in intertemporal problems. In this work I choose one paper in each one of these two areas and show that optimality can be characterized by means of a simple aplication of Arrowís (1968) su¢ ciency theorem.
Resumo:
Chambers (1998) explores the interaction between long memory and aggregation. For continuous-time processes, he takes the aliasing effect into account when studying temporal aggregation. For discrete-time processes, however, he seems to fail to do so. This note gives the spectral density function of temporally aggregated long memory discrete-time processes in light of the aliasing effect. The results are different from those in Chambers (1998) and are supported by a small simulation exercise. As a result, the order of aggregation may not be invariant to temporal aggregation, specifically if d is negative and the aggregation is of the stock type.
Resumo:
Kalai and Lebrer (93a, b) have recently show that for the case of infinitely repeated games, a coordination assumption on beliefs and optimal strategies ensures convergence to Nash equilibrium. In this paper, we show that for the case of repeated games with long (but finite) horizon, their condition does not imply approximate Nash equilibrium play. Recently Kalai and Lehrer (93a, b) proved that a coordination assumption on beliefs and optimal strategies, ensures that pIayers of an infinitely repeated game eventually pIay 'E-close" to an E-Nash equilibrium. Their coordination assumption requires that if players believes that certain set of outcomes have positive probability then it must be the case that this set of outcomes have, in fact, positive probability. This coordination assumption is called absolute continuity. For the case of finitely repeated games, the absolute continuity assumption is a quite innocuous assumption that just ensures that pIayers' can revise their priors by Bayes' Law. However, for the case of infinitely repeated games, the absolute continuity assumption is a stronger requirement because it also refers to events that can never be observed in finite time.