4 resultados para dynamic parameters identification
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This paper presents semiparametric estimators of changes in inequality measures of a dependent variable distribution taking into account the possible changes on the distributions of covariates. When we do not impose parametric assumptions on the conditional distribution of the dependent variable given covariates, this problem becomes equivalent to estimation of distributional impacts of interventions (treatment) when selection to the program is based on observable characteristics. The distributional impacts of a treatment will be calculated as differences in inequality measures of the potential outcomes of receiving and not receiving the treatment. These differences are called here Inequality Treatment Effects (ITE). The estimation procedure involves a first non-parametric step in which the probability of receiving treatment given covariates, the propensity-score, is estimated. Using the inverse probability weighting method to estimate parameters of the marginal distribution of potential outcomes, in the second step weighted sample versions of inequality measures are computed. Root-N consistency, asymptotic normality and semiparametric efficiency are shown for the semiparametric estimators proposed. A Monte Carlo exercise is performed to investigate the behavior in finite samples of the estimator derived in the paper. We also apply our method to the evaluation of a job training program.
Resumo:
This thesis is composed of three articles with the subjects of macroeconomics and - nance. Each article corresponds to a chapter and is done in paper format. In the rst article, which was done with Axel Simonsen, we model and estimate a small open economy for the Canadian economy in a two country General Equilibrium (DSGE) framework. We show that it is important to account for the correlation between Domestic and Foreign shocks and for the Incomplete Pass-Through. In the second chapter-paper, which was done with Hedibert Freitas Lopes, we estimate a Regime-switching Macro-Finance model for the term-structure of interest rates to study the US post-World War II (WWII) joint behavior of macro-variables and the yield-curve. We show that our model tracks well the US NBER cycles, the addition of changes of regime are important to explain the Expectation Theory of the term structure, and macro-variables have increasing importance in recessions to explain the variability of the yield curve. We also present a novel sequential Monte-Carlo algorithm to learn about the parameters and the latent states of the Economy. In the third chapter, I present a Gaussian A ne Term Structure Model (ATSM) with latent jumps in order to address two questions: (1) what are the implications of incorporating jumps in an ATSM for Asian option pricing, in the particular case of the Brazilian DI Index (IDI) option, and (2) how jumps and options a ect the bond risk-premia dynamics. I show that jump risk-premia is negative in a scenario of decreasing interest rates (my sample period) and is important to explain the level of yields, and that gaussian models without jumps and with constant intensity jumps are good to price Asian options.
Resumo:
When estimating policy parameters, also known as treatment effects, the assignment to treatment mechanism almost always causes endogeneity and thus bias many of these policy parameters estimates. Additionally, heterogeneity in program impacts is more likely to be the norm than the exception for most social programs. In situations where these issues are present, the Marginal Treatment Effect (MTE) parameter estimation makes use of an instrument to avoid assignment bias and simultaneously to account for heterogeneous effects throughout individuals. Although this parameter is point identified in the literature, the assumptions required for identification may be strong. Given that, we use weaker assumptions in order to partially identify the MTE, i.e. to stablish a methodology for MTE bounds estimation, implementing it computationally and showing results from Monte Carlo simulations. The partial identification we perfom requires the MTE to be a monotone function over the propensity score, which is a reasonable assumption on several economics' examples, and the simulation results shows it is possible to get informative even in restricted cases where point identification is lost. Additionally, in situations where estimated bounds are not informative and the traditional point identification is lost, we suggest a more generic method to point estimate MTE using the Moore-Penrose Pseudo-Invese Matrix, achieving better results than traditional methods.
Resumo:
Regular vine copulas are multivariate dependence models constructed from pair-copulas (bivariate copulas). In this paper, we allow the dependence parameters of the pair-copulas in a D-vine decomposition to be potentially time-varying, following a nonlinear restricted ARMA(1,m) process, in order to obtain a very flexible dependence model for applications to multivariate financial return data. We investigate the dependence among the broad stock market indexes from Germany (DAX), France (CAC 40), Britain (FTSE 100), the United States (S&P 500) and Brazil (IBOVESPA) both in a crisis and in a non-crisis period. We find evidence of stronger dependence among the indexes in bear markets. Surprisingly, though, the dynamic D-vine copula indicates the occurrence of a sharp decrease in dependence between the indexes FTSE and CAC in the beginning of 2011, and also between CAC and DAX during mid-2011 and in the beginning of 2008, suggesting the absence of contagion in these cases. We also evaluate the dynamic D-vine copula with respect to Value-at-Risk (VaR) forecasting accuracy in crisis periods. The dynamic D-vine outperforms the static D-vine in terms of predictive accuracy for our real data sets.