34 resultados para dynamic factor models
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Multi-factor models constitute a useful tool to explain cross-sectional covariance in equities returns. We propose in this paper the use of irregularly spaced returns in the multi-factor model estimation and provide an empirical example with the 389 most liquid equities in the Brazilian Market. The market index shows itself significant to explain equity returns while the US$/Brazilian Real exchange rate and the Brazilian standard interest rate does not. This example shows the usefulness of the estimation method in further using the model to fill in missing values and to provide interval forecasts.
Resumo:
Multi-factor models constitute a use fui tool to explain cross-sectional covariance in equities retums. We propose in this paper the use of irregularly spaced returns in the multi-factor model estimation and provide an empirical example with the 389 most liquid equities in the Brazilian Market. The market index shows itself significant to explain equity returns while the US$/Brazilian Real exchange rate and the Brazilian standard interest rate does not. This example shows the usefulness of the estimation method in further using the model to fill in missing values and to provide intervaI forecasts.
Resumo:
In this article we use factor models to describe a certain class of covariance structure for financiaI time series models. More specifical1y, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. We build on previous work by allowing the factor loadings, in the factor mo deI structure, to have a time-varying structure and to capture changes in asset weights over time motivated by applications with multi pIe time series of daily exchange rates. We explore and discuss potential extensions to the models exposed here in the prediction area. This discussion leads to open issues on real time implementation and natural model comparisons.
Resumo:
The past decade has wítenessed a series of (well accepted and defined) financial crises periods in the world economy. Most of these events aI,"e country specific and eventually spreaded out across neighbor countries, with the concept of vicinity extrapolating the geographic maps and entering the contagion maps. Unfortunately, what contagion represents and how to measure it are still unanswered questions. In this article we measure the transmission of shocks by cross-market correlation\ coefficients following Forbes and Rigobon's (2000) notion of shift-contagion,. Our main contribution relies upon the use of traditional factor model techniques combined with stochastic volatility mo deIs to study the dependence among Latin American stock price indexes and the North American indexo More specifically, we concentrate on situations where the factor variances are modeled by a multivariate stochastic volatility structure. From a theoretical perspective, we improve currently available methodology by allowing the factor loadings, in the factor model structure, to have a time-varying structure and to capture changes in the series' weights over time. By doing this, we believe that changes and interventions experienced by those five countries are well accommodated by our models which learns and adapts reasonably fast to those economic and idiosyncratic shocks. We empirically show that the time varying covariance structure can be modeled by one or two common factors and that some sort of contagion is present in most of the series' covariances during periods of economical instability, or crisis. Open issues on real time implementation and natural model comparisons are thoroughly discussed.
Resumo:
In this paper we construct common-factor portfolios using a novel linear transformation of standard factor models extracted from large data sets of asset returns. The simple transformation proposed here keeps the basic properties of the usual factor transformations, although some new interesting properties are further attached to them. Some theoretical advantages are shown to be present. Also, their practical importance is confirmed in two applications: the performance of common-factor portfolios are shown to be superior to that of asset returns and factors commonly employed in the finance literature.
Resumo:
Este trabalho analisa a importância dos fatores comuns na evolução recente dos preços dos metais no período entre 1995 e 2013. Para isso, estimam-se modelos cointegrados de VAR e também um modelo de fator dinâmico bayesiano. Dado o efeito da financeirização das commodities, DFM pode capturar efeitos dinâmicos comuns a todas as commodities. Além disso, os dados em painel são aplicados para usar toda a heterogeneidade entre as commodities durante o período de análise. Nossos resultados mostram que a taxa de juros, taxa efetiva do dólar americano e também os dados de consumo têm efeito permanente nos preços das commodities. Observa-se ainda a existência de um fator dinâmico comum significativo para a maioria dos preços das commodities metálicas, que tornou-se recentemente mais importante na evolução dos preços das commodities.
Resumo:
This paper constructs new business cycle indices for Argentina, Brazil, Chile, and Mexico based on common dynamic factors extracted from a comprehensive set of sectoral output, external trade, fiscal and financial variables. The analysis spans the 135 years since the insertion of these economies into the global economy in the 1870s. The constructed indices are used to derive a business cyc1e chronology for these countries and characterize a set of new stylized facts. In particular, we show that ali four countries have historically displayed a striking combination of high business cyc1e volatility and persistence relative to advanced country benchmarks. Volatility changed considerably over time, however, being very high during early formative decades through the Great Depression, and again during the 1970s and ear1y 1980s, before declining sharply in three of the four countries. We also identify a sizeable common factor across the four economies which variance decompositions ascribe mostly to foreign interest rates and shocks to commodity terms of trade.
Resumo:
The approach proposed here explores the hierarchical nature of item-level data on price changes. On one hand, price data is naturally organized around a regional strucuture, with variations being observed on separate cities. Moreover, the itens that comprise the natural structure of CPIs are also normally interpreted in terms of groups that have economic interpretations, such as tradables and non-tradables, energyrelated, raw foodstuff, monitored prices, etc. The hierarchical dynamic factor model allow the estimation of multiple factors that are naturally interpreted as relating to each of these regional and economic levels.
Resumo:
The knowledge of the current state of the economy is crucial for policy makers, economists and analysts. However, a key economic variable, the gross domestic product (GDP), are typically colected on a quartely basis and released with substancial delays by the national statistical agencies. The first aim of this paper is to use a dynamic factor model to forecast the current russian GDP, using a set of timely monthly information. This approach can cope with the typical data flow problems of non-synchronous releases, mixed frequency and the curse of dimensionality. Given that Russian economy is largely dependent on the commodity market, our second motivation relates to study the effects of innovations in the russian macroeconomic fundamentals on commodity price predictability. We identify these innovations through a news index which summarizes deviations of offical data releases from the expectations generated by the DFM and perform a forecasting exercise comparing the performance of different models.
Resumo:
Estudos recentes apontam que diversas estratégias implementadas em hedge funds geram retornos com características não lineares. Seguindo as sugestões encontradas no paper de Agarwal e Naik (2004), este trabalho mostra que uma série de hedge funds dentro da indústria de fundos de investimentos no Brasil apresenta retornos que se assemelham ao de uma estratégia em opções de compra e venda no índice de mercado Bovespa. Partindo de um modelo de fatores, introduzimos um índice referenciado no retorno sobre opções de modo que tal fator possa explicar melhor que os tradicionais fatores de risco a característica não linear dos retornos dos fundos de investimento.
Resumo:
Although there has been substantial research on long-run co-movement (common trends) in the empirical macroeconomics literature. little or no work has been done on short run co-movement (common cycles). Investigating common cycles is important on two grounds: first. their existence is an implication of most dynamic macroeconomic models. Second. they impose important restrictions on dynamic systems. Which can be used for efficient estimation and forecasting. In this paper. using a methodology that takes into account short- and long-run co-movement restrictions. we investigate their existence in a multivariate data set containing U.S. per-capita output. consumption. and investment. As predicted by theory. the data have common trends and common cycles. Based on the results of a post-sample forecasting comparison between restricted and unrestricted systems. we show that a non-trivial loss of efficiency results when common cycles are ignored. If permanent shocks are associated with changes in productivity. the latter fails to be an important source of variation for output and investment contradicting simple aggregate dynamic models. Nevertheless. these shocks play a very important role in explaining the variation of consumption. Showing evidence of smoothing. Furthermore. it seems that permanent shocks to output play a much more important role in explaining unemployment fluctuations than previously thought.
Resumo:
Este trabalho visa analisar a dinâmica das expectativas de inflação em função das condições macroeconômicas. Para tal, extraímos as curvas de inflação implícita na curva de títulos públicos pré-fixados e estimamos um modelo de fatores dinâmicos para sua estrutura a termo. Os fatores do modelo correspondem ao nível, inclinação e curvatura da estrutura a termo, que variam ao longo do tempo conforme os movimentos no câmbio, na inflação, no índice de commodities e no risco Brasil implícito no CDS. Após um choque de um desvio padrão no câmbio ou na inflação, a curva de inflação implícita se desloca positivamente, especialmente no curto prazo e no longo prazo. Um choque no índice de commodities também desloca a curva de inflação implícita positivamente, afetando especialmente a parte curta da curva. Em contraste, um choque no risco Brasil desloca a curva de inflação implícita paralelamente para baixo.
Resumo:
This paper constructs an indicator of Brazilian GDP at the monthly ftequency. The peculiar instability and abrupt changes of regimes in the dynamic behavior of the Brazilian business cycle were explicitly modeled within nonlinear ftameworks. In particular, a Markov switching dynarnic factor model was used to combine several macroeconomic variables that display simultaneous comovements with aggregate economic activity. The model generates as output a monthly indicator of the Brazilian GDP and real time probabilities of the current phase of the Brazilian business cycle. The monthly indicator shows a remarkable historical conformity with cyclical movements of GDP. In addition, the estimated filtered probabilities predict ali recessions in sample and out-of-sample. The ability of the indicator in linear forecasting growth rates of GDP is also examined. The estimated indicator displays a better in-sample and out-of-sample predictive performance in forecasting growth rates of real GDP, compared to a linear autoregressive model for GDP. These results suggest that the estimated monthly indicator can be used to forecast GDP and to monitor the state of the Brazilian economy in real time.
Resumo:
This paper presents new methodology for making Bayesian inference about dy~ o!s for exponential famiIy observations. The approach is simulation-based _~t> use of ~vlarkov chain Monte Carlo techniques. A yletropolis-Hastings i:U~UnLlllll 1::; combined with the Gibbs sampler in repeated use of an adjusted version of normal dynamic linear models. Different alternative schemes are derived and compared. The approach is fully Bayesian in obtaining posterior samples for state parameters and unknown hyperparameters. Illustrations to real data sets with sparse counts and missing values are presented. Extensions to accommodate for general distributions for observations and disturbances. intervention. non-linear models and rnultivariate time series are outlined.
Resumo:
We propose mo deIs to analyze animal growlh data wilh lhe aim of eslimating and predicting quanlities of Liological and economical interest such as the maturing rate and asymptotic weight. lt is also studied lhe effect of environmenlal facLors of relevant influence in the growlh processo The models considered in this paper are based on an extension and specialization of the dynamic hierarchical model (Gamerman " Migon, 1993) lo a non-Iinear growlh curve sdLillg, where some of the growth curve parameters are considered cxchangeable among lhe unils. The inferencc for thcse models are appruximale conjugale analysis Lascd on Taylor series cxpallsiulIs aliei linear Bayes procedures.