1 resultado para degenerate test set
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- JISC Information Environment Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (11)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (18)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Boston University Digital Common (3)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (2)
- CentAUR: Central Archive University of Reading - UK (14)
- Center for Jewish History Digital Collections (12)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (15)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (27)
- Helda - Digital Repository of University of Helsinki (36)
- Indian Institute of Science - Bangalore - Índia (142)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (397)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Brasília (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (9)
- Universidade Federal do Pará (3)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (120)
- University of Queensland eSpace - Australia (4)
- University of Southampton, United Kingdom (3)
- University of Washington (2)
- WestminsterResearch - UK (1)
Resumo:
This work aims to compare the forecast efficiency of different types of methodologies applied to Brazilian Consumer inflation (IPCA). We will compare forecasting models using disaggregated and aggregated data over twelve months ahead. The disaggregated models were estimated by SARIMA and will have different levels of disaggregation. Aggregated models will be estimated by time series techniques such as SARIMA, state-space structural models and Markov-switching. The forecasting accuracy comparison will be made by the selection model procedure known as Model Confidence Set and by Diebold-Mariano procedure. We were able to find evidence of forecast accuracy gains in models using more disaggregated data