1 resultado para cumulative sum
em Repositório digital da Fundação Getúlio Vargas - FGV
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberdeen University (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (6)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (4)
- Aston University Research Archive (13)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Digital Loyola - Universidad de Deusto (5)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (6)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (26)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons at Florida International University (9)
- DigitalCommons@The Texas Medical Center (4)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (32)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (78)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (190)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (39)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (317)
- Repositorio Academico Digital UANL (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad del Pacífico - PERU (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (4)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (3)
- University of Michigan (44)
- University of Queensland eSpace - Australia (2)
- WestminsterResearch - UK (1)
Resumo:
Bounds on the distribution function of the sum of two random variables with known marginal distributions obtained by Makarov (1981) can be used to bound the cumulative distribution function (c.d.f.) of individual treatment effects. Identification of the distribution of individual treatment effects is important for policy purposes if we are interested in functionals of that distribution, such as the proportion of individuals who gain from the treatment and the expected gain from the treatment for these individuals. Makarov bounds on the c.d.f. of the individual treatment effect distribution are pointwise sharp, i.e. they cannot be improved in any single point of the distribution. We show that the Makarov bounds are not uniformly sharp. Specifically, we show that the Makarov bounds on the region that contains the c.d.f. of the treatment effect distribution in two (or more) points can be improved, and we derive the smallest set for the c.d.f. of the treatment effect distribution in two (or more) points. An implication is that the Makarov bounds on a functional of the c.d.f. of the individual treatment effect distribution are not best possible.