6 resultados para covariance estimator
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
The heteroskedasticity-consistent covariance matrix estimator proposed by White (1980), also known as HC0, is commonly used in practical applications and is implemented into a number of statistical software. Cribari–Neto, Ferrari & Cordeiro (2000) have developed a bias-adjustment scheme that delivers bias-corrected White estimators. There are several variants of the original White estimator that also commonly used by practitioners. These include the HC1, HC2 and HC3 estimators, which have proven to have superior small-sample behavior relative to White’s estimator. This paper defines a general bias-correction mechamism that can be applied not only to White’s estimator, but to variants of this estimator as well, such as HC1, HC2 and HC3. Numerical evidence on the usefulness of the proposed corrections is also presented. Overall, the results favor the sequence of improved HC2 estimators.
Resumo:
In this paper, we show that the widely used stationarity tests such as the KPSS test have power close to size in the presence of time-varying unconditional variance. We propose a new test as a complement of the existing tests. Monte Carlo experiments show that the proposed test possesses the following characteristics: (i) In the presence of unit root or a structural change in the mean, the proposed test is as powerful as the KPSS and other tests; (ii) In the presence a changing variance, the traditional tests perform badly whereas the proposed test has high power comparing to the existing tests; (iii) The proposed test has the same size as traditional stationarity tests under the null hypothesis of stationarity. An application to daily observations of return on US Dollar/Euro exchange rate reveals the existence of instability in the unconditional variance when the entire sample is considered, but stability is found in subsamples.
Resumo:
In this paper, we propose a two-step estimator for panel data models in which a binary covariate is endogenous. In the first stage, a random-effects probit model is estimated, having the endogenous variable as the left-hand side variable. Correction terms are then constructed and included in the main regression.
Resumo:
In this paper, we show that the widely used stationarity tests such as the KPSS test has power close to size in the presence of time-varying unconditional variance. We propose a new test as a complement of the existing tests. Monte Carlo experiments show that the proposed test possesses the following characteristics: (i) In the presence of unit root or a structural change in the mean, the proposed test is as powerful as the KPSS and other tests; (ii) In the presence a changing variance, the traditional tests perform badly whereas the proposed test has high power comparing to the existing tests; (iii) The proposed test has the same size as traditional stationarity tests under the null hypothesis of covariance stationarity. An application to daily observations of return on US Dollar/Euro exchange rate reveals the existence of instability in the unconditional variance when the entire sample is considered, but stability is found in sub-samples.
Resumo:
This paper develops a general method for constructing similar tests based on the conditional distribution of nonpivotal statistics in a simultaneous equations model with normal errors and known reducedform covariance matrix. The test based on the likelihood ratio statistic is particularly simple and has good power properties. When identification is strong, the power curve of this conditional likelihood ratio test is essentially equal to the power envelope for similar tests. Monte Carlo simulations also suggest that this test dominates the Anderson- Rubin test and the score test. Dropping the restrictive assumption of disturbances normally distributed with known covariance matrix, approximate conditional tests are found that behave well in small samples even when identification is weak.
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.