3 resultados para canonical form
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
All the demonstrations known to this author of the existence of the Jordan Canonical Form are somewhat complex - usually invoking the use of new spaces, and what not. These demonstrations are usually too difficult for an average Mathematics student to understand how he or she can obtain the Jordan Canonical Form for any square matrix. The method here proposed not only demonstrates the existence of such forms but, additionally, shows how to find them in a step by step manner. I do not claim that the following demonstration is in any way “elegant” (by the standards of elegance in fashion nowadays among mathematicians) but merely simple (undergraduate students taking a fist course in Matrix Algebra would understand how it works).
Resumo:
This work presents closed-form solutions to Lucasís (2000) generalequilibrium expression for the welfare costs of ináation, as well as to the di§erence between the general-equlibrium measure and Baileyís (1956) partial-equilibrium measure. In Lucasís original work only numerical solutions are provided.
Resumo:
Cognition is a core subject to understand how humans think and behave. In that sense, it is clear that Cognition is a great ally to Management, as the later deals with people and is very interested in how they behave, think, and make decisions. However, even though Cognition shows great promise as a field, there are still many topics to be explored and learned in this fairly new area. Kemp & Tenembaum (2008) tried to a model graph-structure problem in which, given a dataset, the best underlying structure and form would emerge from said dataset by using bayesian probabilistic inferences. This work is very interesting because it addresses a key cognition problem: learning. According to the authors, analogous insights and discoveries, understanding the relationships of elements and how they are organized, play a very important part in cognitive development. That is, this are very basic phenomena that allow learning. Human beings minds do not function as computer that uses bayesian probabilistic inferences. People seem to think differently. Thus, we present a cognitively inspired method, KittyCat, based on FARG computer models (like Copycat and Numbo), to solve the proposed problem of discovery the underlying structural-form of a dataset.