2 resultados para The Spherical Bag Approximation
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Consumption is an important macroeconomic aggregate, being about 70% of GNP. Finding sub-optimal behavior in consumption decisions casts a serious doubt on whether optimizing behavior is applicable on an economy-wide scale, which, in turn, challenge whether it is applicable at all. This paper has several contributions to the literature on consumption optimality. First, we provide a new result on the basic rule-of-thumb regression, showing that it is observational equivalent to the one obtained in a well known optimizing real-business-cycle model. Second, for rule-of-thumb tests based on the Asset-Pricing Equation, we show that the omission of the higher-order term in the log-linear approximation yields inconsistent estimates when lagged observables are used as instruments. However, these are exactly the instruments that have been traditionally used in this literature. Third, we show that nonlinear estimation of a system of N Asset-Pricing Equations can be done efficiently even if the number of asset returns (N) is high vis-a-vis the number of time-series observations (T). We argue that efficiency can be restored by aggregating returns into a single measure that fully captures intertemporal substitution. Indeed, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Pricing Equation, since the latter is a linear function of individual returns. This forms the basis of a new test of rule-of-thumb behavior, which can be viewed as testing for the importance of rule-of-thumb consumers when the optimizing agent holds an equally-weighted portfolio or a weighted portfolio of traded assets. Using our setup, we find no signs of either rule-of-thumb behavior for U.S. consumers or of habit-formation in consumption decisions in econometric tests. Indeed, we show that the simple representative agent model with a CRRA utility is able to explain the time series data on consumption and aggregate returns. There, the intertemporal discount factor is significant and ranges from 0.956 to 0.969 while the relative risk-aversion coefficient is precisely estimated ranging from 0.829 to 1.126. There is no evidence of rejection in over-identifying-restriction tests.
Resumo:
We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable con dence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochastic Mirror Descent algorithm and obtain con dence intervals on both the optimal values and optimal solutions. Numerical simulations show that our con dence intervals are much less conservative and are quicker to compute than previously obtained con dence intervals for SMD and that the multistep Stochastic Mirror Descent algorithm can obtain a good approximate solution much quicker than its nonmultistep counterpart. Our con dence intervals are also more reliable than asymptotic con dence intervals when the sample size is not much larger than the problem size.