6 resultados para Synthetic Control Method
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative to estimate treatment effects in comparative case studies. The SC relies on the assumption that there is a weighted average of the control units that reconstruct the potential outcome of the treated unit in the absence of treatment. If these weights were known, then one could estimate the counterfactual for the treated unit using this weighted average. With these weights, the SC would provide an unbiased estimator for the treatment effect even if selection into treatment is correlated with the unobserved heterogeneity. In this paper, we revisit the SC method in a linear factor model where the SC weights are considered nuisance parameters that are estimated to construct the SC estimator. We show that, when the number of control units is fixed, the estimated SC weights will generally not converge to the weights that reconstruct the factor loadings of the treated unit, even when the number of pre-intervention periods goes to infinity. As a consequence, the SC estimator will be asymptotically biased if treatment assignment is correlated with the unobserved heterogeneity. The asymptotic bias only vanishes when the variance of the idiosyncratic error goes to zero. We suggest a slight modification in the SC method that guarantees that the SC estimator is asymptotically unbiased and has a lower asymptotic variance than the difference-in-differences (DID) estimator when the DID identification assumption is satisfied. If the DID assumption is not satisfied, then both estimators would be asymptotically biased, and it would not be possible to rank them in terms of their asymptotic bias.
Resumo:
O objetivo deste trabalho é avaliar o impacto da criação de linhas de financiamento ao parque exibidor cinematográfico brasileiro, uma das formas existentes de incentivo governamental ao setor. Os desembolsos avaliados, realizados pelo BNDES com recursos do Procult e do FSA de 2007 a 2012, consistem em crédito de longo prazo para a criação de salas de cinema, com juros abaixo do mercado e estrutura de garantias flexível. A metodologia econométrica utilizada é o controle sintético, tal como formalizada por Abadie et al. (2010). Sob esse método, não foi possível identificar contribuição positiva da política de crédito quando se confronta o desempenho individual dos exibidores beneficiados versus seus respectivos controles sintéticos, medido pela evolução das variáveis número de salas e público. Ademais, testou-se um possível efeito agregado, considerando a evolução do número de ingressos per capita no Brasil, também não sendo possível identificar contribuição positiva da política sobre tal indicador.
Resumo:
This Master Thesis consists of one theoretical article and one empirical article on the field of Microeconometrics. The first chapter\footnote{We also thank useful suggestions by Marinho Bertanha, Gabriel Cepaluni, Brigham Frandsen, Dalia Ghanem, Ricardo Masini, Marcela Mello, Áureo de Paula, Cristine Pinto, Edson Severnini and seminar participants at São Paulo School of Economics, the California Econometrics Conference 2015 and the 37\textsuperscript{th} Brazilian Meeting of Econometrics.}, called \emph{Synthetic Control Estimator: A Generalized Inference Procedure and Confidence Sets}, contributes to the literature about inference techniques of the Synthetic Control Method. This methodology was proposed to answer questions involving counterfactuals when only one treated unit and a few control units are observed. Although this method was applied in many empirical works, the formal theory behind its inference procedure is still an open question. In order to fulfill this lacuna, we make clear the sufficient hypotheses that guarantee the adequacy of Fisher's Exact Hypothesis Testing Procedure for panel data, allowing us to test any \emph{sharp null hypothesis} and, consequently, to propose a new way to estimate Confidence Sets for the Synthetic Control Estimator by inverting a test statistic, the first confidence set when we have access only to finite sample, aggregate level data whose cross-sectional dimension may be larger than its time dimension. Moreover, we analyze the size and the power of the proposed test with a Monte Carlo experiment and find that test statistics that use the synthetic control method outperforms test statistics commonly used in the evaluation literature. We also extend our framework for the cases when we observe more than one outcome of interest (simultaneous hypothesis testing) or more than one treated unit (pooled intervention effect) and when heteroskedasticity is present. The second chapter, called \emph{Free Economic Area of Manaus: An Impact Evaluation using the Synthetic Control Method}, is an empirical article. We apply the synthetic control method for Brazilian city-level data during the 20\textsuperscript{th} Century in order to evaluate the economic impact of the Free Economic Area of Manaus (FEAM). We find that this enterprise zone had positive significant effects on Real GDP per capita and Services Total Production per capita, but it also had negative significant effects on Agriculture Total Production per capita. Our results suggest that this subsidy policy achieve its goal of promoting regional economic growth, even though it may have provoked mis-allocation of resources among economic sectors.
Resumo:
The synthetic control (SC) method has been recently proposed as an alternative method to estimate treatment e ects in comparative case studies. Abadie et al. [2010] and Abadie et al. [2015] argue that one of the advantages of the SC method is that it imposes a data-driven process to select the comparison units, providing more transparency and less discretionary power to the researcher. However, an important limitation of the SC method is that it does not provide clear guidance on the choice of predictor variables used to estimate the SC weights. We show that such lack of speci c guidances provides signi cant opportunities for the researcher to search for speci cations with statistically signi cant results, undermining one of the main advantages of the method. Considering six alternative speci cations commonly used in SC applications, we calculate in Monte Carlo simulations the probability of nding a statistically signi cant result at 5% in at least one speci cation. We nd that this probability can be as high as 13% (23% for a 10% signi cance test) when there are 12 pre-intervention periods and decay slowly with the number of pre-intervention periods. With 230 pre-intervention periods, this probability is still around 10% (18% for a 10% signi cance test). We show that the speci cation that uses the average pre-treatment outcome values to estimate the weights performed particularly bad in our simulations. However, the speci cation-searching problem remains relevant even when we do not consider this speci cation. We also show that this speci cation-searching problem is relevant in simulations with real datasets looking at placebo interventions in the Current Population Survey (CPS). In order to mitigate this problem, we propose a criterion to select among SC di erent speci cations based on the prediction error of each speci cations in placebo estimations
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we can model the heteroskedasticity of a linear combination of the errors. We show that this assumption can be satisfied without imposing strong assumptions on the errors in common DID applications. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative inference method that relies on strict stationarity and ergodicity of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment periods. We extend our inference methods to linear factor models when there are few treated groups. We also derive conditions under which a permutation test for the synthetic control estimator proposed by Abadie et al. (2010) is robust to heteroskedasticity and propose a modification on the test statistic that provided a better heteroskedasticity correction in our simulations.
Resumo:
Differences-in-Differences (DID) is one of the most widely used identification strategies in applied economics. However, how to draw inferences in DID models when there are few treated groups remains an open question. We show that the usual inference methods used in DID models might not perform well when there are few treated groups and errors are heteroskedastic. In particular, we show that when there is variation in the number of observations per group, inference methods designed to work when there are few treated groups tend to (under-) over-reject the null hypothesis when the treated groups are (large) small relative to the control groups. This happens because larger groups tend to have lower variance, generating heteroskedasticity in the group x time aggregate DID model. We provide evidence from Monte Carlo simulations and from placebo DID regressions with the American Community Survey (ACS) and the Current Population Survey (CPS) datasets to show that this problem is relevant even in datasets with large numbers of observations per group. We then derive an alternative inference method that provides accurate hypothesis testing in situations where there are few treated groups (or even just one) and many control groups in the presence of heteroskedasticity. Our method assumes that we know how the heteroskedasticity is generated, which is the case when it is generated by variation in the number of observations per group. With many pre-treatment periods, we show that this assumption can be relaxed. Instead, we provide an alternative application of our method that relies on assumptions about stationarity and convergence of the moments of the time series. Finally, we consider two recent alternatives to DID when there are many pre-treatment groups. We extend our inference method to linear factor models when there are few treated groups. We also propose a permutation test for the synthetic control estimator that provided a better heteroskedasticity correction in our simulations than the test suggested by Abadie et al. (2010).