48 resultados para Switching autoregressive conditional heteroskedasticity

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho propõe um instrumento capaz de absorver choques no par BRL/USD, garantindo ao seu detentor a possibilidade de realizar a conversão entre essas moedas a uma taxa observada recentemente. O Volatility Triggered Range Forward assemelha-se a um instrumento forward comum, cujo preço de entrega não é conhecido inicialmente, mas definido no momento em que um nível de volatilidade pré-determinado for atingido na cotação das moedas ao longo da vida do instrumento. Seu cronograma de ajustes pode ser definido para um número qualquer de períodos. Seu apreçamento e controle de riscos é baseado em uma árvore trinomial ponderada entre dois possíveis regimes de volatilidade. Esses regimes são determinados após um estudo na série BRL/USD no período entre 2003 e 2009, basedo em um modelo Switching Autoregressive Conditional Heteroskedasticity (SWARCH).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a family of autoregressive conditional duration (ACD) models that encompasses most specifications in the literature. The nesting relies on a Box-Cox transformation with shape parameter λ to the conditional duration process and a possibly asymmetric shocks impact curve. We establish conditions for the existence of higher-order moments, strict stationarity, geometric ergodicity and β-mixing property with exponential decay. We next derive moment recursion relations and the autocovariance function of the power λ of the duration process. Finally, we assess the practical usefulness of our family of ACD models using NYSE transactions data, with special attention to IBM price durations. The results warrant the extra flexibility provided either by the Box-Cox transformation or by the asymmetric response to shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper develops a family of autoregressive conditional duration (ACD) models that encompasses most specifications in the literature. The nesting relies on a Box-Cox transformation with shape parameter λ to the conditional duration process and a possibly asymmetric shocks impact curve. We establish conditions for the existence of higher-order moments, strict stationarity, geometric ergodicity and β-mixing property with exponential decay. We next derive moment recursion relations and the autocovariance function of the power λ of the duration process. Finally, we assess the practical usefulness of our family of ACD models using NYSE price duration data on the IBM stock. The results warrant the extra flexibility provided either by the Box-Cox transformation or by the asymmetric response to shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a class of ACD-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries in financial durations. In particular, our functional coefficient autoregressive conditional duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The motivation lies on the fact that the latter yields a universal approximation if one lets the number of regimes grows without bound. After establishing that the sufficient conditions for strict stationarity do not exclude explosive regimes, we address model identifiability as well as the existence, consistency, and asymptotic normality of the quasi-maximum likelihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addition, we also discuss how to consistently estimate using a sieve approach a semiparametric variant of the FC-ACD model that takes the number of regimes to infinity. An empirical illustration indicates that our functional coefficient model is flexible enough to model IBM price durations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde a adoção do sistema de câmbio flutuante pelo Banco Central do Brasil, tanto a autoridade monetária quanto o governo brasileiro têm instituído medidas convencionais e não convencionais de intervenção no mercado de câmbio. Dentre essas medidas, salientam-se as compras e vendas de dólares no mercado de spot e derivativos, cujas finalidades precípuas seriam a tentativa de estabilizar os mercados em situação de “stress” e suavizar uma determinada tendência de valorização ou desvalorização da moeda brasileira. O presente trabalho analisa os efeitos de referidas intervenções sobre a volatilidade na moeda brasileira. Utilizamos modelos econométricos da família ARCH (Autoregressive Conditional Heteroskedasticity) com o intuito de se averiguar o efeito sobre a volatilidade de curto e longo prazo, inclusive com metodologias semelhantes às empregadas em trabalhos direcionados a outras economias emergentes. Com o propósito de se estudar o efeito sinalizador das intervenções, foram utilizadas regressões simples com dados de volatilidade implícita e risk reversal do mercado de opções do dólar/real. Concluiu-se pela não relevância dos efeitos das intervenções sobre o nível da taxa de câmbio. No que concerne às volatilidades de curto e longo prazo, verificou-se que as vendas de dólares aumentam ambas as volatilidades, porém, quanto às compras, estas não apresentaram significância. No que se refere aos efeitos sinalizadores, via volatilidade implícita e risk reversal, estes também não expuseram relevância. Enfim, o que talvez possa consistir em fundamento para a não relevância dessas intervenções é o fato de o Brasil se consubstanciar em uma economia emergente e com menor credibilidade na condução de suas políticas monetárias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the testing of autoregressive conditional duration (ACD) models by gauging the distance between the parametric density and hazard rate functions implied by the duration process and their non-parametric estimates. We derive the asymptotic justification using the functional delta method for fixed and gamma kernels, and then investigate the finite-sample properties through Monte Carlo simulations. Although our tests display some size distortion, bootstrapping suffices to correct the size without compromising their excellent power. We show the practical usefulness of such testing procedures for the estimation of intraday volatility patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the estimation and testing of conditional duration models by looking at the density and baseline hazard rate functions. More precisely, we foeus on the distance between the parametric density (or hazard rate) function implied by the duration process and its non-parametric estimate. Asymptotic justification is derived using the functional delta method for fixed and gamma kernels, whereas finite sample properties are investigated through Monte Carlo simulations. Finally, we show the practical usefulness of such testing procedures by carrying out an empirical assessment of whether autoregressive conditional duration models are appropriate to oIs for modelling price durations of stocks traded at the New York Stock Exchange.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation proposes a bivariate markov switching dynamic conditional correlation model for estimating the optimal hedge ratio between spot and futures contracts. It considers the cointegration between series and allows to capture the leverage efect in return equation. The model is applied using daily data of future and spot prices of Bovespa Index and R$/US$ exchange rate. The results in terms of variance reduction and utility show that the bivariate markov switching model outperforms the strategies based ordinary least squares and error correction models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O trabalho testa o poder de previsão da volatilidade futura, de cinco modelos : um modelo ingênuo, do tipo martingale, o modelo sugerido pelo JPMorgan em seu RiskMetrics™, o modelo GARCH-Generalized Autoregressive Conditional Heteroscedasticity, o modelo da volatilidade implícita e combinações de Risk:MetricsTM com volatilidade implícita e de GARCH com volatilidade implícita. A série estudada é a volatilidade para vinte e cinco dias, dos retornos diários do contrato futuro de Ibovespa, negociado na BM&F - Bolsa de Mercadorias e Futuros. Particularidades brasileiras são introduzidas na. estimação dos parâmetros do modelo GARCH. O poder de previsão é testado com medidas estatísticas, envolvendo equações de perdas (loss functions) simétricas e assimétricas, e com uma medida econômica, dada pelo lucro obtido a partir da simulação da realização de operações hedgeadas, sugeridas pelas previsões de volatilidade. Tanto com base nas medidas estatísticas como na medida econômica, o modelo GARCH emerge como o de melhor desempenho. Com base nas medidas estatísticas, esse modelo é particularmente melhor em período de mais alta volatilidade. Com base na medida econômica, contudo, o lucro obtido não é estatisticamente diferente de zero, indicando eficiência do mercado de opções de compra do contrato futuro de Ibovespa, negociado na mesmaBM&F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho avalia as previsões de três métodos não lineares — Markov Switching Autoregressive Model, Logistic Smooth Transition Autoregressive Model e Autometrics com Dummy Saturation — para a produção industrial mensal brasileira e testa se elas são mais precisas que aquelas de preditores naive, como o modelo autorregressivo de ordem p e o mecanismo de double differencing. Os resultados mostram que a saturação com dummies de degrau e o Logistic Smooth Transition Autoregressive Model podem ser superiores ao mecanismo de double differencing, mas o modelo linear autoregressivo é mais preciso que todos os outros métodos analisados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desse trabalho é encontrar uma medida dinâmica de liquidez de ações brasileiras, chamada VNET. Foram utilizados dados de alta frequência para criar um modelo capaz de medir o excesso de compras e vendas associadas a um movimento de preços. Ao variar no tempo, o VNET pode ser entendido como a variação da proporção de agentes informados em um modelo de informação assimétrica. Uma vez estimado, ele pode ser utilizado para prever mudanças na liquidez de uma ação. O VNET tem implicações práticas importantes, podendo ser utilizado por operadores como uma medida estocástica para identificar quais seriam os melhores momentos para operar. Gerentes de risco também podem estimar a deterioração de preço esperada ao se liquidar uma posição, sendo possível analisar suas diversas opções, servindo de base para otimização da execução. Na construção do trabalho encontramos as durações de preço de cada ação e as diversas medidas associadas a elas. Com base nos dados observa-se que a profundidade varia com ágio de compra e venda, com o volume negociado, com o numero de negócios, com a duração de preços condicional e com o seu erro de previsão. Os resíduos da regressão de VNET se mostraram bem comportados o que corrobora a hipótese de que o modelo foi bem especificado. Para estimar a curva de reação do mercado, variamos os intervalos de preço usados na definição das durações.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the last decades, the analysis of the transmissions of international nancial events has become the subject of many academic studies focused on multivariate volatility models volatility. The goal of this study is to evaluate the nancial contagion between stock market returns. The econometric approach employed was originally presented by Pelletier (2006), named Regime Switching Dynamic Correlation (RSDC). This methodology involves the combination of Constant Conditional Correlation Model (CCC) proposed by Bollerslev (1990) with Markov Regime Switching Model suggested by Hamilton and Susmel (1994). A modi cation was made in the original RSDC model, the introduction of the GJR-GARCH model formulated in Glosten, Jagannathan e Runkle (1993), on the equation of the conditional univariate variances to allow asymmetric e ects in volatility be captured. The database was built with the series of daily closing stock market indices in the United States (SP500), United Kingdom (FTSE100), Brazil (IBOVESPA) and South Korea (KOSPI) for the period from 02/01/2003 to 09/20/2012. Throughout the work the methodology was compared with others most widespread in the literature, and the model RSDC with two regimes was de ned as the most appropriate for the selected sample. The set of results provide evidence for the existence of nancial contagion between markets of the four countries considering the de nition of nancial contagion from the World Bank called very restrictive. Such a conclusion should be evaluated carefully considering the wide diversity of de nitions of contagion in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Market timing performance of mutual funds is usually evaluated with linear models with dummy variables which allow for the beta coefficient of CAPM to vary across two regimes: bullish and bearish market excess returns. Managers, however, use their predictions of the state of nature to deÞne whether to carry low or high beta portfolios instead of the observed ones. Our approach here is to take this into account and model market timing as a switching regime in a way similar to Hamilton s Markov-switching GNP model. We then build a measure of market timing success and apply it to simulated and real world data.