8 resultados para Stochastic Differential Utility

em Repositório digital da Fundação Getúlio Vargas - FGV


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the dynamic hedging problem using three different utility specifications: stochastic differential utility, terminal wealth utility, and we propose a particular utility transformation connecting both previous approaches. In all cases, we assume Markovian prices. Stochastic differential utility, SDU, impacts the pure hedging demand ambiguously, but decreases the pure speculative demand, because risk aversion increases. We also show that consumption decision is, in some sense, independent of hedging decision. With terminal wealth utility, we derive a general and compact hedging formula, which nests as special all cases studied in Duffie and Jackson (1990). We then show how to obtain their formulas. With the third approach we find a compact formula for hedging, which makes the second-type utility framework a particular case, and show that the pure hedging demand is not impacted by this specification. In addition, with CRRA- and CARA-type utilities, the risk aversion increases and, consequently the pure speculative demand decreases. If futures price are martingales, then the transformation plays no role in determining the hedging allocation. We also derive the relevant Bellman equation for each case, using semigroup techniques.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho apresentado no 37th Conference on Stochastic Processes and their Applications - July 28 - August 01, 2014 -Universidad de Buenos Aires

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho apresentado no Congresso Nacional de Matemática Aplicada à Indústria, 18 a 21 de novembro de 2014, Caldas Novas - Goiás

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multivariate Affine term structure models have been increasingly used for pricing derivatives in fixed income markets. In these models, uncertainty of the term structure is driven by a state vector, while the short rate is an affine function of this vector. The model is characterized by a specific form for the stochastic differential equation (SDE) for the evolution of the state vector. This SDE presents restrictions on its drift term which rule out arbitrages in the market. In this paper we solve the following inverse problem: Suppose the term structure of interest rates is modeled by a linear combination of Legendre polynomials with random coefficients. Is there any SDE for these coefficients which rules out arbitrages? This problem is of particular empirical interest because the Legendre model is an example of factor model with clear interpretation for each factor, in which regards movements of the term structure. Moreover, the Affine structure of the Legendre model implies knowledge of its conditional characteristic function. From the econometric perspective, we propose arbitrage-free Legendre models to describe the evolution of the term structure. From the pricing perspective, we follow Duffie et al. (2000) in exploring Legendre conditional characteristic functions to obtain a computational tractable method to price fixed income derivatives. Closing the article, the empirical section presents precise evidence on the reward of implementing arbitrage-free parametric term structure models: The ability of obtaining a good approximation for the state vector by simply using cross sectional data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho apresentamos um novo método numérico com passo adaptativo baseado na abordagem de linearização local, para a integração de equações diferenciais estocásticas com ruído aditivo. Propomos, também, um esquema computacional que permite a implementação eficiente deste método, adaptando adequadamente o algorítimo de Padé com a estratégia “scaling-squaring” para o cálculo das exponenciais de matrizes envolvidas. Antes de introduzirmos a construção deste método, apresentaremos de forma breve o que são equações diferenciais estocásticas, a matemática que as fundamenta, a sua relevância para a modelagem dos mais diversos fenômenos, e a importância da utilização de métodos numéricos para avaliar tais equações. Também é feito um breve estudo sobre estabilidade numérica. Com isto, pretendemos introduzir as bases necessárias para a construção do novo método/esquema. Ao final, vários experimentos numéricos são realizados para mostrar, de forma prática, a eficácia do método proposto, e compará-lo com outros métodos usualmente utilizados.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the Pricing Equation in a panel-data framework, we construct a novel consistent estimator of the stochastic discount factor (SDF) which relies on the fact that its logarithm is the serial-correlation ìcommon featureîin every asset return of the economy. Our estimator is a simple function of asset returns, does not depend on any parametric function representing preferences, is suitable for testing di§erent preference speciÖcations or investigating intertemporal substitution puzzles, and can be a basis to construct an estimator of the risk-free rate. For post-war data, our estimator is close to unity most of the time, yielding an average annual real discount rate of 2.46%. In formal testing, we cannot reject standard preference speciÖcations used in the literature and estimates of the relative risk-aversion coe¢ cient are between 1 and 2, and statistically equal to unity. Using our SDF estimator, we found little signs of the equity-premium puzzle for the U.S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho apresentado no International Conference on Scientific Computation And Differential Equations 2015

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We aim to provide a review of the stochastic discount factor bounds usually applied to diagnose asset pricing models. In particular, we mainly discuss the bounds used to analyze the disaster model of Barro (2006). Our attention is focused in this disaster model since the stochastic discount factor bounds that are applied to study the performance of disaster models usually consider the approach of Barro (2006). We first present the entropy bounds that provide a diagnosis of the analyzed disaster model which are the methods of Almeida and Garcia (2012, 2016); Ghosh et al. (2016). Then, we discuss how their results according to the disaster model are related to each other and also present the findings of other methodologies that are similar to these bounds but provide different evidence about the performance of the framework developed by Barro (2006).