16 resultados para Stationary
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
This paper investigates the presence of long memory in financiaI time series using four test statistics: V/S, KPSS, KS and modified R/S. There has been a large amount of study on the long memory behavior in economic and financiaI time series. However, there is still no consensus. We argue in this paper that spurious short-term memory may be found due to the incorrect use of data-dependent bandwidth to estimating the longrun variance. We propose a partially adaptive lag truncation procedure that is robust against the presence of long memory under the alternative hypothesis and revisit several economic and financiaI time series using the proposed bandwidth choice. Our results indicate the existence of spurious short memory in real exchange rates when Andrews' formula is employed, but long memory is detected when the proposed lag truncation procedure is used. Using stock market data, we also found short memory in returns and long memory in volatility.
Resumo:
A contractive method for computing stationary solutions of intertemporal equilibrium models is provide. The method is is implemented using a contraction mapping derived from the first-order conditions. The deterministic dynamic programming problem is used to illustrate the method. Some numerical examples are performed.
Resumo:
A model of overlapping generations in continuous time is composed. IndividuaIs pass through two distinct time periods during their life times. During the first period, they work, save and have a death probability equal to zero. During the second, from the periods T after birth, their probability of death changes to p and then they retire. Capital stock and the stationary state in come are calculated for two situations: in the first, people live from their accumulated capital after retirementj in the second, they live from a state transfer payment through income taxo To simplify matters, in this preliminary version, it is supposed that there is no population growth and that the instantaneous elasticity substitution of consumption is unitary.
Resumo:
The presence of deterministic or stochastic trend in U.S. GDP has been a continuing debate in the literature of macroeconomics. Ben-David and Papell (1995) found evindence in favor of trend stationarity using the secular sample of Maddison (1995). More recently, Murray and Nelson (2000) correctly criticized this nding arguing that the Maddison data are plagued with additive outliers (AO), which bias inference towards stationarity. Hence, they propose to set the secular sample aside and conduct inference using a more homogeneous but shorter time-span post-WWII sample. In this paper we re-visit the Maddison data by employing a test that is robust against AO s. Our results suggest the U.S. GDP can be modeled as a trend stationary process.
Resumo:
Several empirical studies in the literature have documented the existence of a positive correlation between income inequalitiy and unemployment. I provide a theoretical framework under which this correlation can be better understood. The analysis is based on a dynamic job search under uncertainty. I start by proving the uniqueness of a stationary distribution of wages in the economy. Drawing upon this distribution, I provide a general expression for the Gini coefficient of income inequality. The expression has the advantage of not requiring a particular specification of the distribution of wage offers. Next, I show how the Gini coefficient varies as a function of the parameters of the model, and how it can be expected to be positively correlated with the rate of unemployment. Two examples are offered. The first, of a technical nature, to show that the convergence of the measures implied by the underlying Markov process can fail in some cases. The second, to provide a quantitative assessment of the model and of the mechanism linking unemployment and inequality.
Resumo:
Using national accounts data for the revenue-GDP and expenditure GDP ratios from 1947 to 1992, we examine two central issues in public finance. First, was the path of public debt sustainable during this period? Second, if debt is sustainable, how has the government historically balanced the budget after hocks to either revenues or expenditures? The results show that (i) public deficit is stationary (bounded asymptotic variance), with the budget in Brazil being balanced almost entirely through changes in taxes, regardless of the cause of the initial imbalance. Expenditures are weakly exogenous, but tax revenues are not;(ii) a rational Brazilian consumer can have a behavior consistent with Ricardian Equivalence (iii) seignorage revenues are critical to restore intertemporal budget equilibrium, since, when we exclude them from total revenues, debt is not sustainable in econometric tests.
Resumo:
In this paper we investigate fiscal sustainability by using a quantile autoregression (QAR) model. We propose a novel methodology to separate periods of nonstationarity from stationary ones, which allows us to identify various trajectories of public debt that are compatible with fiscal sustainability. We use such trajectories to construct a debt ceiling, that is, the largest value of public debt that does not jeopardize long-run fiscal sustainability. We make out-of-sample forecast of such a ceiling and show how it could be used by Policy makers interested in keeping the public debt on a sustainable path. We illustrate the applicability of our results using Brazilian data.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.
Resumo:
This paper the stastistical properties of the real exchange rates of G-5 countries for the Bretton-Woods peiod, and draw implications on the purchasing power parity (PPP) hypothesis. In contrast to most previous studies that consider only unit root and stationary process to describe the real exchange tae, this paper also considers two in-between processes, the locally persistent process ans the fractionally integrated process, to complement past studies. Seeking to be consistent with tha ample evidence of near unit in the real exchange rate movements very well. This finding implies that: 1) the real exchange movement is more persistent than the stationary case but less persistent than the unit root case; 2) the real exchange rate is non-stationary but the PPP reversion occurs and the PPP holds in the long run; 3) the real exchange rate does not exhibit the secular dependence of the fractional integration; 4) the real exchange rate evolves over time in a way that there is persistence over a range of time, but the effect of shocks will eventually disappear over time horizon longer than order O (nd), that is, at finite time horizon; 5) shocks dissipation is fasters than predicted by the fractional integracion, and the total sum of the effects of a unit innovation is finite, implying that a full PPP reversion occurs at finite horizons. These results may explain why pasrt empirical estudies could not provide a clear- conclusion on the real exchange rate processes and the PPP hypothesis.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.
Resumo:
This thesis is composed of three essays referent to the subjects of macroeconometrics and Önance. In each essay, which corresponds to one chapter, the objective is to investigate and analyze advanced econometric techniques, applied to relevant macroeconomic questions, such as the capital mobility hypothesis and the sustainability of public debt. A Önance topic regarding portfolio risk management is also investigated, through an econometric technique used to evaluate Value-at-Risk models. The Örst chapter investigates an intertemporal optimization model to analyze the current account. Based on Campbell & Shillerís (1987) approach, a Wald test is conducted to analyze a set of restrictions imposed to a VAR used to forecast the current account. The estimation is based on three di§erent procedures: OLS, SUR and the two-way error decomposition of Fuller & Battese (1974), due to the presence of global shocks. A note on Granger causality is also provided, which is shown to be a necessary condition to perform the Wald test with serious implications to the validation of the model. An empirical exercise for the G-7 countries is presented, and the results substantially change with the di§erent estimation techniques. A small Monte Carlo simulation is also presented to investigate the size and power of the Wald test based on the considered estimators. The second chapter presents a study about Öscal sustainability based on a quantile autoregression (QAR) model. A novel methodology to separate periods of nonstationarity from stationary ones is proposed, which allows one to identify trajectories of public debt that are not compatible with Öscal sustainability. Moreover, such trajectories are used to construct a debt ceiling, that is, the largest value of public debt that does not jeopardize long-run Öscal sustainability. An out-of-sample forecast of such a ceiling is also constructed, and can be used by policy makers interested in keeping the public debt on a sustainable path. An empirical exercise by using Brazilian data is conducted to show the applicability of the methodology. In the third chapter, an alternative backtest to evaluate the performance of Value-at-Risk (VaR) models is proposed. The econometric methodology allows one to directly test the overall performance of a VaR model, as well as identify periods of an increased risk exposure, which seems to be a novelty in the literature. Quantile regressions provide an appropriate environment to investigate VaR models, since they can naturally be viewed as a conditional quantile function of a given return series. An empirical exercise is conducted for daily S&P500 series, and a Monte Carlo simulation is also presented, revealing that the proposed test might exhibit more power in comparison to other backtests.
Resumo:
A dificuldade em se caracterizar alocações ou equilíbrios não estacionários é uma das principais explicações para a utilização de conceitos e hipóteses que trivializam a dinâmica da economia. Tal dificuldade é especialmente crítica em Teoria Monetária, em que a dimensionalidade do problema é alta mesmo para modelos muito simples. Neste contexto, o presente trabalho relata a estratégia computacional de implementação do método recursivo proposto por Monteiro e Cavalcanti (2006), o qual permite calcular a sequência ótima (possivelmente não estacionária) de distribuições de moeda em uma extensão do modelo proposto por Kiyotaki e Wright (1989). Três aspectos deste cálculo são enfatizados: (i) a implementação computacional do problema do planejador envolve a escolha de variáveis contínuas e discretas que maximizem uma função não linear e satisfaçam restrições não lineares; (ii) a função objetivo deste problema não é côncava e as restrições não são convexas; e (iii) o conjunto de escolhas admissíveis não é conhecido a priori. O objetivo é documentar as dificuldades envolvidas, as soluções propostas e os métodos e recursos disponíveis para a implementação numérica da caracterização da dinâmica monetária eficiente sob a hipótese de encontros aleatórios.