1 resultado para Seminario de Nobles de San Ignacio (Valencia)-Examenes
em Repositório digital da Fundação Getúlio Vargas - FGV
Resumo:
Modelos de predição baseados em estimações não-paramétricas continuam em desenvolvimento e têm permeado a comunidade quantitativa. Sua principal característica é que não consideram a priori distribuições de probabilidade conhecidas, mas permitem que os dados passados sirvam de base para a construção das próprias distribuições. Implementamos para o mercado brasileiro os estimadores agrupados não-paramétricos de Sam e Jiang (2009) para as funções de drift e de difusão do processo estocástico da taxa de juros instantânea, por meio do uso de séries de taxas de juros de diferentes maturidades fornecidas pelos contratos futuros de depósitos interfinanceiros de um dia (DI1). Os estimadores foram construídos sob a perspectiva da estimação por núcleos (kernels), que requer para a sua otimização um formato específico da função-núcleo. Neste trabalho, foi usado o núcleo de Epanechnikov, e um parâmetro de suavizamento (largura de banda), o qual é fundamental para encontrar a função de densidade de probabilidade ótima que forneça a estimação mais eficiente em termos do MISE (Mean Integrated Squared Error - Erro Quadrado Integrado Médio) no momento de testar o modelo com o tradicional método de validação cruzada de k-dobras. Ressalvas são feitas quando as séries não possuem os tamanhos adequados, mas a quebra estrutural do processo de difusão da taxa de juros brasileira, a partir do ano 2006, obriga à redução do tamanho das séries ao custo de reduzir o poder preditivo do modelo. A quebra estrutural representa um processo de amadurecimento do mercado brasileiro que provoca em grande medida o desempenho insatisfatório do estimador proposto.